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Abstract

Rapid advances in machine learning necessitate significant com-
puting power and memory for training, which is accessible only to
large corporations today. Small-scale players like academics often
only have consumer-grade GPU clusters locally and can afford cloud
GPU instances to a limited extent. However, training performance
significantly degrades in this multi-cluster setting. In this paper,
we identify unique opportunities to accelerate training and pro-
pose StellaTrain, a holistic framework that achieves near-optimal
training speeds in multi-cloud environments. StellaTrain dynami-
cally adapts a combination of acceleration techniques to minimize
time-to-accuracy in model training. StellaTrain introduces novel
acceleration techniques such as cache-aware gradient compression
and a CPU-based sparse optimizer to maximize GPU utilization
and optimize the training pipeline. With the optimized pipeline,
StellaTrain holistically determines the training configurations to
optimize the total training time. We show that StellaTrain achieves
up to 104X speedup over PyTorch DDP in inter-cluster settings by
adapting training configurations to fluctuating dynamic network
bandwidth. StellaTrain demonstrates that we can cope with the
scarce network bandwidth through systematic optimization, achiev-
ing up to 257.3% and 78.1X speed-ups on the network bandwidths
of 100 Mbps and 500 Mbps, respectively. Finally, StellaTrain enables
efficient co-training using on-premises and cloud clusters to reduce
costs by 64.5% in conjunction with a reduced training time of 28.9%.
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1 Introduction

The field of machine learning (ML) has seen incredible growth,
driven by the development of increasingly complex models [7, 12,
51] and large datasets [10]. Since training these models requires mas-
sive amounts of computing power and memory, distributed training
across multiple nodes and GPUs has gained traction [26]. However,
large-scale distributed learning is expensive, requiring datacenter-
grade GPUs [30] that cost more than $10,000 per unit, high-speed
interconnects between GPUs (e.g, NVLink or NVSwitch [31]), and
GPU-dedicated networks reaching 800 Gbps [45].

Many Al researchers leverage consumer-grade GPUs in lab-scale
settings for training due to their cost-effectiveness [11]. For in-
stance, RTX 4090 delivers 73% of the training speed compared to a
datacenter-grade A100 GPU at only 1/5 price. However, distributed
training with consumer-grade GPUs is extremely slow, as gradi-
ent exchange is often bottlenecked by scarce network bandwidth,
eventually leading to GPU underutilization [2]. Such bottlenecks
are even worse in hybrid cluster settings when researchers aug-
ment the local lab resources with limited cloud GPU instances, and
train a single model collaboratively across clusters separated by the
Wide Area Network (WAN) with constrained and highly variable
bandwidth [20] (Figure 1).

Existing approaches to accelerate training, such as gradient com-
pression [3, 4, 14, 19, 38, 43, 48] and pipelining [23, 33, 41, 46, 53],
operate in a datacenter environment with 100+ Gbps GPU-to-GPU
connectivity. These solutions require inter-node bandwidths of at
least 25 Gbps [41, 45, 46] to achieve high efficiency. However, in a
typical WAN environment where the bandwidth is orders of mag-
nitude lower, these methods face substantial challenges. First, in
systems that rely on synchronous updates, existing pipelines are in-
effective even with compression because of the lengthened gradient
transfer time, leading to GPU pipeline stalls. Second, systems that
rely on asynchronous updates [8, 49, 52, 54] result in an excessive
degree of staleness, significantly slowing down model convergence.
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Figure 1: A multi-cluster environment with two on-premises lab clusters and a cloud cluster.

In this paper, we present StellaTrain, the first framework for
distributed training that minimizes the time-to-accuracy of model
training in multi-cluster environments separated by a WAN. It is
the first to achieve near-optimal training speeds in multi-cloud
environments. We introduce two key enablers to achieve such high
training speeds. First, StellaTrain employs gradient compression to
effectively use the network in low-bandwidth environments and ex-
ploits the resulting sparsity of gradients to devise computationally
efficient compression and optimization.

This delivers a 128X speedup in optimization at 99% compression,
allowing it to be offloaded to the CPU, further streamlining the
training pipeline. Second, StellaTrain introduces layer-wise partial
staleness, in which some layers immediately receive the gradient
update, but for other layers, it is delayed by one iteration. This
ensures that gradient updates are performed synchronously with
minimum staleness and that the transfer of compressed gradient is
fully interleaved with computation.

However, introducing partial staleness and compression simulta-
neously invites new challenges. In contrast to existing systems that
rely on synchronous updates, the use of partial staleness makes the
convergence speed more sensitive to compression rate and training
batch size. This means that blindly optimizing for GPU utilization
may not minimize Time-To-Accuracy in our environment. In ad-
dition, the optimal values of hyperparameters, such as batch size
and compression rate, change dynamically with the changing WAN
bandwidth, and hence, these parameters must be adapted on the
fly. Reduced WAN bandwidth, for example, requires a higher com-
pression rate and/or larger batch sizes, but these adjustments may
affect convergence speed, requiring careful real-time optimization.
To this end, we reassess the impact of various hyperparameters
under staleness on the two key determinants of TTA—convergence
speed and iteration speed. Finally, to find the optimal batch size
and compression rate given the current bandwidth, StellaTrain em-
ploys Bayesian optimization and the Nelder-Mead method, which
effectively locates an optimal point out of a large search space.

Our evaluation shows that StellaTrain can effectively minimize
Time-To-Accuracy (TTA) with consumer-grade GPUs spread over
multiple clusters. Our implementation demonstrates that Stella-
Train successfully adapts the training strategy to variable network
conditions [13] and reduces TTA by up to 104X compared to Py-
Torch DDP [26] in environments with variable WAN bandwidth.
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Figure 2: Model size vs. batch processing time. The band-
width lines show the ratio of model size to batch processing
times. Most models require large bandwidths for gradient
exchange, falling outside of the WAN bandwidth range of
CloudLab [13].

We verify that StellaTrain reduces TTA by up to 257.3X and 78.1X
compared to PyTorch DDP in 100 Mbps and 500 Mbps inter-cluster
settings, respectively. Finally, we show that StellaTrain can reduce
cloud costs by 64.5% while also reducing the training time by 28.9%
by leveraging a combination of the public cloud and on-premises
cluster in a multi-cluster setup.

2 Motivation

2.1 DL training in lab-scale clusters

Compared to data center GPUs, consumer-grade GPUs are slower
but are more cost-effective. For example, NVIDIA DGX A100 [29],
facilitates data transfer at a rate of 2.4 TB/s over NVSwitch for intra-
node communications and up to 250 GB/s through InfiniBand for
inter-node communications, thus significantly accelerating training
at scale. However, it costs $14,999 per unit, nearly 10X the price of an
NVIDIA GeForce RTX 3090 server, which relies on slower commu-
nication channels—PCle for intra-GPU and Ethernet for inter-node
communications. Despite the limited connectivity, servers with
consumer-grade GPUs provide nearly half the performance [6] of
an A100 at one-tenth of the price.

Owing to their cost-effectiveness, many academic researchers
and ML practitioners employ consumer-grade GPUs in their on-
premises lab settings. To verify the model validity and get quick
feedback, researchers prefer to have GPU resources available at all
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Strategy Iter. Speed Conv. Speed TTA
Gradient compression (r) © ® ?
Batch size (b) ® ? ?
Staleness (s) ® ® ?
Pipelining @) No Effect @)
Sparse optimizer © No Effect @)
Cache-aware compression © No Effect ©)

Table 1: Impact of acceleration strategies on training met-
rics. Each technique may positively (marked ©) or negatively
(marked ®) affect performance. The performance of com-
ponents marked with ? will vary according to the choice of
parameters.

times, rather than waiting in a job queue on a shared cluster. Using
a public cloud is not a viable option due to its significant cost (e.g.,
$23,924/month for 8 A100 GPUs [39]).

As ML practitioners scale the models and work with larger
datasets, the computing requirements may surpass what is feasible
on on-premises GPU clusters, resulting in very long turnaround
times for each training epoch. Thus, they may want to augment
their computing power with remote resources to accelerate train-
ing. For example, collaborating academic groups can pool their
resources to improve the overall performance of large-scale train-
ing jobs. One such model is CloudLab clusters [13], which have
a wide variety of GPUs scattered over a wide-area network for
shared academic use. Alternatively, academics may want to use
public cloud resources alongside their lab resources.

The core problem in training under such an environment is that
the transmission of gradients under the relatively low and fluc-
tuating bandwidth conditions of the WAN significantly hampers
the performance of high-end GPUs. Cutting-edge models require
the transfer of tens of gigabytes of gradient data, as illustrated in
Figure 2. The size of the model divided by the processing time of
a training batch indicates the required bandwidth represented as
crosses. The bandwidth requirements of most models fall outside
the range of WAN bandwidth measured between CloudLab clus-
ters [13] in Utah and Wisconsin, which fluctuates between 50 Mbps
and 600 Mbps with an average of 193 Mbps. In our experiment with
1 Gbps inter-node connection, training a ResNet50 model leads
to scenarios where clusters utilize only 17% of utilization in the
cloud during the entire training duration. This inefficiency results
in extended training time and wasted resources. StellaTrain en-
sures the full utilization of all available GPUs across multi-clusters,
effectively eliminating idle wait time. Consequently, StellaTrain
can deliver as much training performance in the multi-cluster as a
purely public cloud-based setup. As we show in our evaluation, this
reduces training time and cloud resource usage, resulting in cost
savings of 64.5% and 45.1% for FP32 and FP16 training, respectively.

2.2 Need for Direction Optimization of TTA

Different acceleration strategies have varying impacts on TTA,
which is a product of iteration speed and convergence speed. Some
strategies, such as pipelining, improve the iteration speed without
any adverse impact on the convergence speed. However, the impact
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Figure 3: Convergence speed varies across various configura-
tions of (batch size, compression rate), even if they require
the same bandwidth.

of other solutions, such as gradient compression and staleness,
can be double-edged—they improve the iteration speed but reduce
the convergence speed. Table 1 summarizes how the strategies of
StellaTrain impact one or both factors that determine the TTA: the
iteration time and the convergence speed. Among the strategies,
the bottom three in the table—pipelining, sparse optimizer, and
cache-aware gradient compression—are all system optimizations
that improve GPU utilization and thus improve the iteration speed
without affecting the convergence speed.

The top three strategies have tunable parameters, depending
on which the overall impact is determined. Hence, these strategies
need to be employed cautiously. Determining the optimal config-
uration of the techniques above is challenging, even in isolation,
because it depends on the variable network condition and the model
complexity/size. Moreover, when two or more acceleration tech-
niques are employed simultaneously, tuning one technique could
inadvertently hurt convergence speed; hence, joint optimization
of parameters is necessary. For example, two configurations that
achieved the same iteration time and TTA without staleness may
exhibit different convergence speeds with stale gradient updates
(delay of one iteration). Figure 3 shows the convergence speed for
different combinations of batch size and compression rate. Although
they are all equivalent in terms of iteration time, their convergence
speeds, and thus their TTA, are different.

Due to the interdependence of these strategies, predicting the
impact of configuration changes in the multi-strategy system is
significantly more complex. Hence, a holistic approach for mini-
mizing TTA is crucial in the multi-cluster environment separated
by the WAN. Finally, since the network bandwidth between clus-
ters is scarce and subject to frequent fluctuations [37], the optimal
configuration can vary with time based on network conditions.

3 Optimizing Training Pipeline
StellaTrain revisits CPU offloading and model staleness to stream-
line the pipeline with the following observations:

e Direct data exchange between GPUs [32] is not supported in
consumer-grade GPUs. Thus, CPUs play a pivotal role in gra-
dient transfer. The presence of CPUs on the path presents an
opportunity for offloading tasks, such as compression and model
optimization. However, optimization and compression are an
order of magnitude slower with CPUs than with GPUs. Thus,
there is a critical need to enhance CPU-based optimization.
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Figure 4: Comparison of training pipelines.

e In a WAN environment where the bandwidth is often orders of
magnitude lower than datacenter networks, transferring gradi-
ents in time for the next iteration is impossible. Such synchro-
nous update inevitably results in underutilization of GPUs even
with gradient compression, as shown in Figure 4(a).
StellaTrain strategically offloads compression and optimization

to the CPU and adopts carefully designed partial staleness in the

gradient update, creating a pipeline that fully utilizes the GPUs,
as shown in Figure 4(b). The CPU-based sparse optimizer (§3.1)

and gradient sparsification/compression (§3.2) combined delivers a

128X speed-up by leveraging sparsity in computation and cache-

awareness. StellaTrain schedules gradient transfers by prioritizing
layers that appear first in the pipeline and leverages partially stale
updates for the remaining layers (§3.3).

Benefits. As a whole, our pipeline design offers three key bene-
fits. First, the staleness allows us to efficiently overlap GPU-based
computations (both forward and backward passes) with CPU-based
operations (such as compression and optimization) and commu-
nication (both within and across nodes). Second, the CPU offload
design leverages gradients already residing in the CPU memory for
gradient transfer. Third, it frees up GPU resources for the more com-
putationally intensive forward and backward passes. Consumer-
grade GPUs, limited by memory, can only utilize small batch sizes.
This causes the optimization and compression phases to consume
a relatively larger segment of the processing time. They account
for more than 43% of the total processing time. By offloading these
compute-intensive tasks to the CPU, StellaTrain not only makes
better use of available resources, but also avoids a major slowdown
in the overall training process, offering up to 7.6x acceleration.
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3.1 CPU-based Sparse Optimizer

The optimization step involves large matrix operations between the
parameter and gradient tensors. These operations are slow on CPUs
because of the inherently limited computational parallelism. For
example, optimizing a ViT-B model with a CPU takes 17.2X more
time than with a GPU (RTX 2080 Ti). To accelerate optimization
at the CPU, we introduce sparse optimizer that takes advantage of
two key characteristics:

¢ Independence of each model parameter: Each model param-
eter is updated independently, a feature that holds true for most
standard optimization algorithms, including the Stochastic Gra-
dient Descent (SGD) [36]. This independent update procedure
can be generally represented by the equation x < x + Ag, where
A stands for the learning rate, and g signifies the gradient of the
parameter.

Significantly fewer sparsified gradients: In contexts where
compression (sparsification) is utilized, the number of elements
in the sparsified gradients is greatly reduced compared to the
original set of parameters.

Existing optimizers [46] that deal with compressed gradients
ignore these characteristics and naively perform decompression,
i.e., generating the dense gradient tensor by filling zero values for
sparsified elements, before applying the optimization. As a result,
regardless of how sparse the gradients are, the optimization time
stays the same.

In contrast, our sparse optimizer incurs computation linearly
proportional to the number of non-zero gradients, delivering sub-
stantial benefit in our environment where gradients are heavily
compressed. The optimizer directly performs optimization on spar-
sified gradients without decompression into a dense matrix. Lever-
aging the independence of each model parameter, it applies updates
element-by-element, exclusively to parameters associated with non-
zero gradients, avoiding the computational redundancy of updating
parameters with zero gradients. Consequently, we observe a sub-
stantial reduction in total computation by a factor of ﬁ where
r refers to the compression rate. For example, 99% compression
(transferring 1% of gradients) results in 1% of computation.

Behaviorally, a minor difference exists only for momentum-based
optimizers that update the parameters using a moving average,
even when the current gradient is zero. Since sparse optimizer in
StellaTrain does not update the parameter when its gradient value
is zero, it may lead to a small error. However, our empirical analysis
indicates the resulting error is negligible and has a minor effect on
the speed of convergence.

3.2 CPU-based Gradient Sparsification

Although the sparse optimizer significantly reduces computational
demands during optimization, it does not reflect the same efficiency
in reducing the optimization time, i.e., a 99% compression of gradi-
ents does not result in a 99% reduction in the optimization time. This
is because applying the sparse gradient in the optimization phase
results in random access to the model parameters. This does not
work well with the CPU’s mechanism of fetching data from DRAM
in cache-line size blocks (64 bytes or 16 four-byte elements) [21].
Hence, the benefits of sparse optimization can be fully harnessed



Accelerating Model Training in Multi-cluster Environments with Consumer-grade GPUs

only when combined with a more cache-friendly approach in gra-
dient compression.

Cache-aware sparsification. To reap the full benefit of sparse
optimization, we design a novel compression scheme that takes into
account the cache-line size for determining the top elements. We
extend the threshold-ov [14], which is known to be faster than the
Top-k method [3] that requires partial sorting. Unlike the vanilla
version, which selects the top k elements using a threshold, Stella-
Train selects the top % cache-aligned blocks based on the highest
cumulative magnitude within each block and then selects all 16 ele-
ments within these chosen blocks for update. This strategy ensures
that every element in the CPU cache is fully utilized, thereby in-
creasing the cache hit ratio and reducing CPU pipeline stalls. This
cache-aware threshold-v scheme itself enables up to 7.6x faster
sparse optimization than the vanilla version, while also accelerat-
ing the compression itself by up to 3.3X. This scheme exhibits only
a marginal slowdown in model convergence, as shown in Section 5.

StellaTrain leverages an automated feedback loop to adjust the
threshold, v. First, StellaTrain filters blocks of gradients, each equiv-
alent to the size of the cache line, so that the sum of the magnitudes
of the gradients within a block exceeds the threshold, v. Next, the
system checks if the number of filtered blocks is greater than or
smaller than kpjock, the target value. Note that kpjocr = l—k(), since
the cache-line blocks consist of 16 elements. When the number
of filtered blocks is greater than kyjock, StellaTrain increases v;
conversely, if the number of filtered blocks is less than kpjock, Stella-
Train reduces v. StellaTrain uses an Additive Increase Multiplicative
Decrease (AIMD) based estimator to update the threshold value v.
The multiplicative decrease phase ensures that the system backs
off quickly when the total load exceeds the threshold. To further
improve efficiency, the compressed gradients are stored in COO
(Coordinate) format—instead of storing the entire gradient matrix,
we only store the non-zero values along with their corresponding
indices.

The cache-aware threshold-v scheme offers several performance
advantages. First, it minimizes the number of blocks fetched to the
CPU cache. For a given target k, cache-aware threshold-v will fetch
at most [%] blocks, while the vanilla threshold-v can potentially
fetch up to k in the worst case. Second, when a block is accessed, the
cache-aware thresholdo updates all parameters within the block,
resulting in a near-perfect cache hit rate. In contrast, the vanilla
threshold-v may update only a single parameter within a block of
16, leading to a cache hit rate as low as 6.25% in the worst case. This
results in a net speed-up of 128% in CPU-side optimization.

3.3 Efficient Pipeline Management

StellaTrain carefully schedules the tasks in the CPU pipeline to
minimize training stalls and improve training efficiency.

Priority-based task scheduling. Traditional DNN training sched-
uling pipelines use a first-come, first-served approach (FCFS), where
tasks are processed in the order they arrive, without considering
that the gradients of the initial layers (those closer to the input) are
computed last, but the updated parameters of the initial layers are
needed first in the next iteration. This results in suboptimal use of
computational resources, leaving GPUs underutilized while waiting
for the necessary gradients from the initial layers. In addition, this
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Figure 5: StellaTrain allows instant updates for some layers
using fresh parameters from the previous iteration.

delay in the initial layers can propagate through subsequent layers,
bloating the entire iteration time.

To address this, StellaTrain adopts a priority-based scheduling
scheme based on the Earliest Deadline First (EDF) algorithm. Unlike
the FCFS approach, StellaTrain gives higher priority to tasks associ-
ated with earlier training iterations and initial layers (Figure 4(b)).
Prioritizing the initial layers effectively prevents the GPU pipeline
from stalling and maximizes GPU utilization by focusing on re-
ducing delays in the critical path. However, currently executing
lower-priority tasks are allowed to continue without pre-emption
to ensure efficient resource usage.

Although prior work has employed priority-based scheduling
for network transfers between workers [16, 22], StellaTrain is the
first to leverage layer-wise prioritization for intra-node pipelining,
to the best of our knowledge. Prioritization emerges as a unique
opportunity in the intra-node context with StellaTrain due to the
strategic combination of bounded staleness and CPU offloading.

Partially stale update. Despite the priority-based task scheduling,
there are instances where the parameters of the later layers (those
closer to the output) are updated before those of the initial layers
due to the unfinished backward pass on initial layers. In such cases,
we efficiently schedule tasks for the later layers ahead of those
for the initial layers without waiting for the initial layers to finish
the backward pass. For example, in Figure 5, tasks associated with
Layer 6 are scheduled earlier than any other layers, as the backward
pass on other layers has not finished.

This provides an opportunity to leverage freshly updated pa-
rameters for some layers from the immediately preceding iteration
to proceed with the next iteration. For example, in Figure 5, new
parameters of Layer 6 are ready before the forward pass of Layer 6
in iteration n + 1. We find that 15% of the layers can benefit from
such instantly updated parameters on the ViT-B model.

Recognizing this, StellaTrain introduces partial staleness—a max-
imum staleness limit of 1 applies to all layers while also allowing
immediate update of some layers without any staleness. If the
parameters for a particular layer are updated before the next itera-
tion’s forward pass begins, StellaTrain employs the freshly updated
parameter, potentially improving the convergence speed. Note that
this approach of training models with inconsistent staleness still
provides convergence guarantees [8].

4 Holistic minimization of TTA

With its optimized pipeline, StellaTrain performs co-optimization
to determine training configurations that minimize TTA. For this, it
employs a centralized controller that optimizes GPU configurations
across heterogeneous clusters, as shown in Figure 7. Unlike hyper-
parameters in the ML context—such as learning rate, optimizer, and
learning rate scheduling—which are usually determined through a
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random search or a rule of thumb [42], configurations to optimize
TTA can be determined systematically.

The co-optimization problem can be visualized as shown in Fig-
ure 6. In the three-dimensional space of gradient compression rate,
network bandwidth, and per-device batch size in Figure 6a, the
optimal operating points in terms of the iteration speed of a given
model lie on an intersecting line between the gray surface (de-
termined by Equation (6)) and a plane determined by the current
network bandwidth. The goal of the co-optimization problem is
to identify the optimal point such that the product of iteration
speed and convergence speed (represented as color in Figure 6b) is
maximized.

4.1 Optimization Cycle

StellaTrain implements a centralized controller that collects teleme-
try data from GPUs and determines the optimal configuration of
(r,X) to minimize TTA, directing GPUs to use the updated configu-
ration, as illustrated in Figure 7. Before training, the controller loads
a model profile obtained via offline profiling. During training, the
controller periodically collects the telemetry data from each worker
and estimates the performance of each GPU and the network band-
width. Next, the controller determines the optimal compression
rate and per-device batch size based on real-time telemetry data
and the model profile. Finally, the controller applies the updated
configurations to the workers asynchronously.

In detail, before training, the controller loads the model profile,
g(r, 23; xi), which is a map from compression rate and total batch
size to convergence speed, obtained from offline Bayesian optimiza-
tion (§ 4.3). During training, the controller collects telemetry data
from multiple GPUs, which includes the current batch size x;, GPU
training throughput f;(x;), and GPU idle rate. Upon receiving this
telemetry (@), the controller performs the following steps:

e ® GPU Throughput Estimation: Using x; and f; (x;), the controller
updates the parameters of the GPU throughput model, ; and
Bi, for each GPU using the Nelder-Mead method.

o @ Network Bandwidth Estimation: Based on the idle rate of the
GPU, it updates the estimated bandwidth of the network B. We
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Figure 7: StellaTrain finds the best setting of (r, x) that min-
imizes TTA using GPU training throughput and network
bandwidth estimation based on the telemetry.

use a feedback loop to estimate the network bandwidth B from
the idle rate of the GPU. When the idle rate of the GPU is less
than 5%, the controller increases the estimated bandwidth, as
this indicates that the network bandwidth is overestimated. Oth-
erwise, the controller reduces the estimated bandwidth.

® Optimal Configuration Search: Leveraging f;(x;), §(r, 2, x),
and B, the controller finds the best combination of (r,X) that
minimizes Equation (1), given the constraint Equation (6).
After finding the optimal (r, X), the controller directs the GPUs to
use the updated configuration from the designated iteration (®).
Thus, this procedure does not slow down the training.

4.2 Optimization Objective

StellaTrain minimizes a weighted sum of two objectives—TTA and
iteration time variance. It employs the Nelder-Mead method, a
simplex-based optimization technique for nonlinear optimization
problems, to minimize the resulting objective function, shown in
Equation (1).
1)
Minimizing iteration time variance across GPUs optimizes for
high utilization of GPU resources. The optimization problem is also
subject to a bandwidth-based constraint on the compression rate
r. Next, we describe our steps in deriving the equation of the two
objectives and the bandwidth constraint.

TTA + A X iteration time variance across GPUs

Objective 1: Variance in iteration time. Given a model, the
training throughput depends on the batch size. When the batch
size is less than a certain threshold (@;), GPUs are not fully utilized.
With small batches, gradient transfers occur more frequently, of-
ten limiting the throughput. Thus, training throughput increases
linearly with batch size up to a threshold until the GPUs are fully
saturated. The throughput of GPU i given the batch size x; can be
modeled as:

i) = min( 2 ) @

1
where a; and f; respectively denotes the batch size threshold to
saturate GPU i and the training throughput of GPU i after saturation.
Iteration time at GPU i then can be formulated as J%, obtained

by dividing the batch size x; assigned to GPU i by the throughput of
GPU i. We provide the values of «; and f; for selected models and
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RTX 2080 Ti RTX 3090 RTX 4090
ResNet152 [17] (32, 118) (48, 183) (64, 270)
ViT-B-16 [12] (20, 99) (32, 148) (28, 300)
Swin-B [27] (16, 80) (36, 112) (40, 217)

Table 2: Tuple of (batch size threshold o to saturate GPU,
training throughput f (image/s) after saturation).

GPUs in Table 2. Note that this saturation occurs with relatively
small batch sizes compared to the maximum batch size that can be
trained on a device without gradient accumulation. For instance,
RTX 4090 can train ResNet50 with a batch size of up to 256, but
training throughput saturates early at a batch size of 64. This allows
StellaTrain to select the best per-device batch size that maximizes
the convergence speed.

To maximize GPU utilization in a heterogeneous GPU cluster,
StellaTrain allocates batch sizes proportional to each device’s com-
putational speed. It aims to minimize iteration time discrepancies
across GPUs by reducing the variance in training time per iteration
(variance of ﬁ_&_) across different GPUs i). Instead of directly tar-
geting the variance, however, StellaTrain focuses on minimizing
the relative standard deviation (also known as the coefficient of
shown in Equation (3), which normalizes the standard

Varlatlon)

deviation agalnst the mean, thus diminishing the influence of the
mean.

o V2 Gn) - O rin)?

= i fi&)
Objective 2: TTA. StellaTrain aims to minimize the number of
additional training epochs to achieve the same training accuracy
while maximizing the training throughput. We first formulate the
global iteration speed by dividing the total batch sizes (}}; x;) by
the iteration time of the slowest GPU k, since the global iteration
speed is determined by the slowest device.

Zx, X == fk(xk) s.t.k= argmax
7 Xk fl(xl)

Leveraging Equation (4) and the surrogate model for convergence
speed g(r, 3.; xi) (detailed in Section 4.3), the objective function to
minimize TTA can be expressed as:

1+g(r, 2 xi)
(Six1) x

®)

4)

®)

tk= argmax

f(xl

Bandwidth constraint. When the network bandwidth is insuffi-
cient to complete the gradient exchange within a single iteration
time, the iteration time increases. To prevent such a slowdown, we
impose the following constraint on the compression rate, r:

re1oDw M
m fi(xi)
where B and m represent the link bandwidth and the model size,
respectively. Note that r should be dynamically adjusted based on
the change in the link bandwidth B and the time taken for the
forward and backward pass (J%).

(6)
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Algorithm 1 Modeling convergence speed with Bayesian Opti-
mization based on compression rate and total batch size

1: function TESTRUN(r, b, s)

// r: compression rate, b: batch size, s: staleness

Dgup < sample(D, 0.5)

for (x, y) in get_batches(Dgyp, b) do
L=1£(y, f(x0n-s))
On+1 < optimizer(6y, compress(Vg,
L£—09-L+(1-099 - L

end for

return £

: end function

. Init Gaussian Process (GP)

: g(r,x) « surrogate model derived from the GP

: Ybase < TESTRUN(r, ZminPms )

: fort =1to N do

r « uniform random sampling in [0, 0.999]

L)

I S =Y
T S

15: Select xtota by optimizing the acquisition function
(Expected Improvement) over [Xpin, Xmax |
16: y < TESTRUN(r, Xtotal, 1)

17:
18:
19:

Update the Gaussian Process with (7, Xiotal) = Y — Ubase
end for
return §(r, x)

4.3 Modeling Convergence Speed

StellaTrain estimates the convergence speed g(r, x), given the com-
pression rate r and total batch size x = Y. x;, which is used for
TTA optimization in Equation (5). Ideally, we would like to create
a detailed model which shows the estimate of the fraction of extra
trainings epochs needed to attain equivalent model accuracy, as in
Figure 6(b). To this end, we define g(r, x) as the relative difference
in loss after half an epoch of probe training with the total batch
size x, comparing the training loss with applied compression and
staleness against the loss with neither. However, profiling every
potential setting of (r, x) is computationally expensive due to the
large search space of possible configurations, where r can take any
value in the range [0, 1), and x can be up to the sum of the maxi-
mum batch sizes for all GPUs. To address this, StellaTrain employs
Bayesian optimization (BO) to reduce the number of probe train-
ing runs (line 1-9 in Algorithm 1) while obtaining a g that closely
approximates g.

BO builds a surrogate statistical model (e.g., Gaussian process)
to approximate the expensive objective function g(r, x) based on
past evaluation points. An acquisition function uses this surrogate
model to determine the next most promising point (r, x) to evaluate
g(r, x), iteratively updating the surrogate for N steps. This allows
BO to find a good approximation g(r, x) ~ g(r, x) with many fewer
expensive ¢g(r, x) evaluations than exhaustive search over (r, x).

We build a surrogate model g(r, x) that closely approximates
g(r, x) from offline profiling (Algorithm 1). We leverage Expected
Improvement (EI) as the acquisition function, which is used to
determine the next point to evaluate the surrogate model g(r, x),
iteratively updating the Gaussian Process (GP) for N steps. Un-
like the online, dynamic optimization of Section 4.1, this Bayesian
optimization process is done offline in the profiling phase, once
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Figure 8: Performance of StellaTrain in a multi-cluster environment.

per each model architecture before the actual training process be-
gins. Specifically, we use a variant of EI that focuses on minimizing
g(r,x) for a given r, rather than finding the optimal pair (r,x)
that minimizes g(r, x). To achieve this, our custom EI randomly
selects r and chooses x that maximizes the expected decrease in the
loss, thereby ensuring uniform exploration of potential r values,
which improves robustness to different r values (line 15-16 in Al-
gorithm 1). We find that our approach with BO can achieve a high
quality approximation of g(r, x) after exhaustively exploring only
N = 30 steps, which is only 0.003% of what would be required for
exhaustively exploring the entire search space (i.e., 1000 r values (0
to 0.999) and 1021 x values (4 to 1024)).

5 Evaluation

We evaluate the performance of StellaTrain to answer the following
questions:

e How much improvement in TTA does it deliver? (§5.1)

e What impact do the batch size adaptation and cache-aware com-
pression have on the training pipeline? (§5.2)

e How efficient are the CPU-based schemes, cache-aware com-
pression, and sparse optimizer? (§5.3)

Implementation. We implement StellaTrain in 4.7k lines of C++
and provide a model wrapper for compatibility with existing Py-
Torch training workflows. It leverages 16 worker threads per GPU
in a thread pool model to maximize resource utilization. It avoids
busy waiting for CUDA events and synchronization to save CPU
cycles. We employ shared memory and ZeroMQ [5] for efficient
inter-process and inter-node communication, respectively.

Settings. We compare the performance of StellaTrain with four
baselines: PyTorch DDP [26] (gloo backend), BytePS [23], BytePS-
Compress [55] and Espresso [46]. BytePS-Compress uses GPU-
based gradient compression, which is built upon a network pipelin-
ing solution, BytePS. Espresso, the closest related work, adds adap-
tive gradient compression atop BytePS. We further implement het-
erogeneous GPU support for PyTorch DDP and BytePS-Compress.
For the baselines, we use a batch size that fully fills the GPU mem-
ory.

We perform evaluations using three nodes in the on-premises
cluster with 2 GPUs each and one node in the remote cluster with 4
GPUs (4 nodes and 10 GPUs total). Three nodes in the on-premises
cluster have two NVIDIA RTX 4090, two RTX 4090, and two RTX
3090, respectively. The node in the remote cluster has four NVIDIA
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V100 GPUs. We emulate the bandwidth between the on-premises
(Node 1, 2, 3) and remote (Node 4) clusters using the network
bandwidth trace we measured between two CloudLab clusters [13]
(Utah and Wisconsin), in order to maintain consistency across ex-
periments. The average WAN bandwidth between the on-premises
and the remote cluster is 115.7 Mbps.

We also show evaluations with the specific link speeds of 100 Mbps,
500 Mbps, and 1 Gbps, which were selected after the WAN band-
width observation above. In these evaluations, we use the same
node setup except for Node 4, in which we replace the remote GPU
node with an on-premises node with two RTX 2080 Ti. We use
the suggested compression rate of 90%, 95%, and 99% for BytePS-
Compress and Espresso for the bandwidths of 1 Gbps, 500 Mbps,
and 100 Mbps, respectively.

We evaluate three different models: ResNet152 [17] (58 M param-
eters), ViT-Base-16 [12] (88 M parameters), and Swin-B [27] (139 M
parameters). We train the model with the ImageNet-100 dataset (a
subset of ImageNet [10] with 100 classes) up to 100 epochs and lever-
age SGD [36] optimizer to update parameters. We also fine-tune a
pre-trained LLM, GPT-2 (123.6 M parameters).

5.1 End-to-end benefits

Figure 8(a) shows the end-to-end training time to reach the same
training loss (or time-to-accuracy) in the multi-cloud scenario, nor-
malized to that of PyTorch DDP. Compared to methods that do not
involve compression, StellaTrain achieves higher TTA reduction by
up to 104X. PyTorch DDP suffers from both high gradient exchange
time under limited network bandwidth and under-utilization of
GPUs due to stragglers, as RTX 3090 is up to 2.02X slower than
RTX 4090 (Table 2). The improved version of PyTorch DDP that
supports heterogeneous GPUs (denoted as PyTorch DDP + Hetero)
trains the model up to 2.06X faster but is still up to 63.7x slower
than StellaTrain.

Compared to systems that employ gradient compression (BytePS-
Compress and Espresso), StellaTrain reduces TTA by up to 57.8x.
Powered by GPU-based compression, BytePS-Compress achieves
significant gain over non-compressed baselines as it eliminates
the bottleneck in gradient transmission. However, all baselines
are still slower than StellaTrain, even with heterogeneous GPU
support. StellaTrain achieves 1.84X-2.55% better TTA compared to
BytePS-Compress + Hetero, which is the best-performing baseline
except for StellaTrain, as shown in Figure 8(b) in linear scale. This is
because its gradient compression runs on GPU, consuming valuable
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Figure 10: Cost savings of StellaTrain. narios, respectively.

However, even in the static bandwidth environment, BytesPS-

Compress with heterogeneous GPU support, the fastest baseline

except for StellaTrain, is still up to 6.12x slower than StellaTrain.

GPU resources for compression, and its use of synchronous update In particular, in the 100 Mbps environment, it wastes valuable GPU
causes the GPU to wait for the gradient exchange. In addition, their resources for compression and needs to wait for the gradient ex-
inability to adjust to variable WAN bandwidth results in slower change, causing GPU stalls. Espresso performs better than non-

gradient exchanges and reduced iteration speed when the WAN compressed baselines but still struggles in low-bandwidth scenarios.
As Espresso’s logic deciding how, where, or whether to compress

bandwidth experiences degradation.
is highly optimized for higher bandwidth environment (>25 Gbps),

Figure 8(c) shows the iteration speed of training the ViT-Base-16

model trained with StellaTrain and other baselines over time, un- Espresso scheduler makes inefficient decisions—it exchanges most
der varying WAN bandwidth. StellaTrain, unlike baselines lacking of the layers uncompressed or only applies gradient quantization
bandwidth adaptation, dynamically adapts its compression rate and to FP16. (e.g., only compresses 7 out of 330 layers for Swin-B). This
batch size to the available bandwidth, thereby maintaining stable ends up transferring more data than fixed compression.

and high iteration speeds close to the optimal. Iteration and convergence speed. To identify the factors con-

tributing to performance gains, we compare the iteration speed
as well as the convergence speed of each framework in Figure 11.
StellaTrain achieves the best iteration speed (Figure 11(a)) among
all systems due to its optimized pipeline. The iteration speed of
StellaTrain outruns that of GPU-based compression scheme by
up to 785%, 72.8%, and 68.1% in 100 Mbps, 500 Mbps, and 1 Gbps,
respectively.

Unlike common belief, Figure 11(b) show that the convergence
speed is not heavily penalized even with high compression rate

Cloud cost reduction. Figure 10 demonstrates that StellaTrain
reduces cloud costs by 64.5% and 45.1% for FP32 and FP16 training,
respectively, through efficient co-training between cloud and on-
premises clusters. This is achieved through efficient co-training
across cloud and on-premises clusters, allowing users to augment
their GPU resources in the cloud as needed but at a reduced cost.
We examine TTA and cloud expenses across three configurations: 1)
6 RTX GPUs (on-premises only), 2) 8 V100 GPUs (cloud-only), and
3) a combination of 6 RTX GPUs and 4 V100 GPUs using StellaTrain
for co-training.
Training only with on-premises resources eliminates cloud costs, e ) ) i
but limits training throughput, limiting scalability and TTA reduc- N(Zite tG};a[tJFPSZ training in V100'1s even slower thap in RTX 2080 Ti. Datacenter-
grade s (V100, A100) are optimized for FP16 training and are only faster than
tion potential. Conversely, cloud-based training with 8 V100 GPUs consumer-grade GPUs in such cases.
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Figure 11: Iteration Speed and Convergence Speed with different WAN bandwidths (relative to PyTorch DDP).

and staleness. While other compression-based schemes (BytePS-
Compress, Espresso) feature high convergence speed, we empir-
ically demonstrate that the overhead of waiting for the gradient
exchange is actually greater than the penalty in convergence speed
due to staleness.

Fine-tuning LLMs. We show that StellaTrain enables efficient
fine-tuning of LLM models in a multicluster environment. We com-
pare the TTA of fine-tuning pre-trained GPT-2 model (123.6 M
parameters) when trained with PyTorch DDP and StellaTrain. We
fine-tune pre-trained GPT-2 model with WikiText-103 [28] dataset
for 1 epoch. When trained with 1 Gbps network, we find StellaTrain
is 17.2x and 8.71x faster than training with PyTorch DDP and Py-
Torch DDP with heterogeneous GPU support. The performance
gain is comparable to our evaluation on image-based training.

Using StellaTrain, users can now efficiently train LLMs across
multiple nodes. Without StellaTrain, the best one can do within
our 8 GPU cluster is using only one node with 2 RTX4090. On a
single machine with two RTX 4090s, LLM fine-tuning results in
a throughput of 17.8 iterations/second. On our distributed cluster
with 8 GPUs (detailed in settings), we achieve a significant speed-up
with a throughput of 27.2 iterations/second with StellaTrain (a 53%
speedup compared to the single-node setup). On the same cluster,
PyTorch-DDP can achieve only 1.58 iterations/second, i.e., 11.24X
slowdown compared to a single-node setup.

For fine-tuning LLMs over large-scale distributed datasets, Stel-
laTrain can reduce the WAN bandwidth usage by avoiding the need
for moving the entire dataset. Instead, it exchanges gradients over
the limited-bandwidth WAN.

5.2 Component-wise benefits

Dynamic batch size adaptation. Figure 14(a) shows how Stel-
laTrain selects the optimal compression ratio and total batch size
under varying bandwidth for the ViT-Base-16 model, evaluated on
two nodes with two RTX 4090 and two RTX 2080 Ti each. Stella-
Train selects different batch size and compression rate depending
on the observed bandwidth; when the available bandwidth is 1 Gbps,
StellaTrain selects a batch size of 137 with a 97% compression rate,
and when the available bandwidth is 100 Mbps, StellaTrain choose
a batch size and compression rate of 240 and 99.5%, respectively.
With Swin-B, StellaTrain achieves 43.3% and 8.1% faster TTA
than baselines with no adaptation and compression-ratio only adap-
tation, respectively, as shown in Figure 14(b). The baseline without
any adaptation suffers from both slower iteration speed and con-
vergence speed coming from congestion and sub-optimal batch
size selection. Adapting compression rate also makes a sub-optimal
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choice of batch size, risking a very high compression ratio when
bandwidth is scarce, slowing down the convergence.

Figure 14(c) shows how StellaTrain adapts the batch size of each
GPU in response to fluctuations in bandwidth in an evaluation with
4 GPUs (two RTX 4090 and two RTX 2080 Ti). The dashed line
represents a trace of the fluctuating WAN bandwidth measured
between CloudLab clusters, while the solid line indicates the batch
size selected by StellaTrain for different types of GPUs. StellaTrain
dynamically adjusts the batch size across the GPUs to minimize the
TTA, selecting larger batch sizes for faster GPUs and smaller batch
sizes for slower GPUs to prevent stragglers.

Cache-aware compression and Sparse optimizer. Cache-aware
compression and the sparse optimizer are essential for maximiz-
ing GPU utilization during compressed gradient exchange. Using
PyTorch Top-k compression instead of cache-aware compression
decreases iteration speed by 11.3% due to the higher computational
demands. Replacing the sparse optimizer with the default SGD op-
timizer in PyTorch further slows down iteration speed by 17.3%. As
both processes are computationally heavy, when both cache-aware
compression and the sparse optimizer are disabled, the iteration
speed diminishes significantly, showing a 44.3% reduction.

5.3 Deep dive

Sparse optimizer. Figure 12 shows the time taken by optimizers to
update the model parameters. We compare the dense optimizer from
PyTorch with the CPU-based sparse optimizer in StellaTrain (§3.1).
While the dense optimizer is fast on GPUs, it becomes significantly
slower on a CPU, requiring up to 172 ms, which makes the CPU-
based optimization infeasible. In contrast, our sparse optimizer, with
cache awareness turned off, can achieve an optimization time of
10.2 ms (at 99% gradient compression), which is 16.8x the reduction.
The cache-aware compression further reduces this time, achieving
1.34 ms at 99% gradient compression, which amounts to 128x speed
up. Note that for the dense optimizer, the time remains constant
regardless of the compression ratio, as the total computation is
fixed to the parameter size.

Cache-aware compression. The cache-aware threshold-v com-
pression method accelerates compression itself as shown in Fig-
ure 13 (a). It achieves up to 3.35X faster compression than its non-
cache-aware counterpart, requiring only 33.5 ms to compress the
gradient for the entire model. Remarkably, cache-aware threshold-v
is 16% faster than vanilla threshold-v, even on GPUs. In Figure 13
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Figure 14: Compression rate and batch size adaptation.

(b), we compare model convergence speed and observe that cache-
aware threshold-v is comparable to vanilla threshold-v and outper-
forms random-k, a commonly used scheme for lightweight com-
pression.

Priority-based scheduling. We evaluate the impact of gradient
prioritization by comparing the baseline First-Come-First-Serve
(FCFS) scheduling of gradient updates with priority-based schedul-
ing in StellaTrain using the ResNet152 model. We observe that the
baseline FCFS is 9.6% slower compared to priority-based scheduling
in StellaTrain. Since model updates from initial layers are priori-
tized in StellaTrain, the forward pass of the subsequent iteration
can begin sooner in StellaTrain. As model size increases, the bene-
fits of prioritization will become more prominent since the initial
layers have to wait longer in FCFS.

Staleness. Applying bounded staleness is important in acceler-
ating the convergence speed. Eliminating staleness requires the
subsequent iteration to wait for gradient exchange, which stalls the
training pipeline. Our evaluation with Swin-B shows that eliminat-
ing staleness slows down the iteration speed by 22%. While bounded
staleness affects the convergence speed, it doesn’t influence the
eventual convergence of the model. Our results indicate that the
introduction of staleness can slow down the convergence speed by
at most 18%. However, this slowdown is still less significant than
the slowdown observed when staleness is completely eliminated

Gradient Compression Ratio

(a) Compression Time
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Figure 13: Performance of the cache-aware threshold-v compression.

(22% - 33.4%). Thus, introducing bounded staleness is beneficial in
reducing the TTA.

In our adaptive staleness approach, about 15% of the layers are
updated without staleness, providing a balance between maintain-
ing fast iteration speed and effective convergence.

6 Related work and Discussion

Federated learning. StellaTrain is designed for environments
where each GPU computes gradients very fast. This is in contrast
to Federated Learning (FL), where asynchronous parameter update
is applied to accommodate highly variable and inherently slow
computation speeds. Applying existing FL solutions in such a setup
would rather increase model staleness excessively, severely slow-
ing down the convergence speed. The main focus of FL is rather
on handling non-IID data across different clients, which is not a
concern for StellaTrain as it operates with IID training data.

Benefits of co-optimization. Figure 15 shows the trade-off space
of acceleration strategies in terms of the two determinants of TTA.
The vanilla distributed training scheme, PyTorch DDP [26], has a
high convergence speed but low iteration speed due to high network
load. Compression strategies [3, 4, 14, 19, 43] reduce the network
load considerably and, thereby, improve iteration speed. However,
compression could affect the convergence speed significantly if it
is not carefully tuned, particularly at low bandwidths. Network
adaptive compression schemes, such as DC2 [1] and Kimad [47],
can mitigate this effect. By combining pipelining with compression,
Espresso [46] can further improve both convergence and iteration
speeds, but it requires careful tuning. StellaTrain significantly im-
proves the iteration time while also maintaining high convergence
speed, as demonstrated in our evaluations. The co-optimization
of multiple acceleration strategies enables us to unlock the high-
performance region in the design trade-off space.

The performance of various schemes in Figure 15 can be visual-
ized as the flexibility that each scheme offers to explore the optimal
plane in Figure 6. Espresso searches for the optimal point on the two-
dimensional plane of compression ratio and network bandwidth
in Figure 6. StellaTrain, on the other hand, enables us to search
the three-dimensional space alongside leveraging fixed staleness,
priority-based task scheduling, and CPU-based optimizations.

Supporting larger models. The design of StellaTrain focuses on
supporting data parallelism in a multi-cluster environment, sepa-
rated by a WAN. Although our current implementation and evalua-
tion are limited to training models that fit within the GPU mem-
ory, we believe it can be easily extended to support the training
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Figure 15: Multi-cluster acceleration strategies in the trade-
off space of the two determinants of TTA.

of LLMs with hundreds of billions of parameters (e.g. GPT-3 [7],
OPT-175B [51]) with negligible additional overhead.

There are two main ways to enable this. The most straightfor-
ward approach is to apply existing offloading techniques to train
larger models within a single GPU. StellaTrain then treats each
individual GPU machine as a cluster of its own without any modifi-
cation. With parameter offloading [35] and activation checkpoint-
ing, StellaTrain can save GPU memory by maintaining only the
active layer’s parameters on the GPU and offloading the rest to the
CPU memory. Implementing such techniques only requires an extra
parameter upload step before the backward pass and is unlikely
to significantly impact the iteration speed, given that the current
PCle upload bandwidth utilization is less than 20%. The second ap-
proach is to take a hierarchical design. This takes advantage of the
high-speed connectivity within a cluster to train larger models with
model parallelism and apply data parallelism across clusters. Fur-
ther research is required into streamlined multi-tiered pipelining to
enable hierarchial gradient exchange across model/data parallelism
boundaries.

Lack of formal proof of convergence. In StellaTrain, we com-
bine multiple acceleration strategies and empirically demonstrate
that co-optimization does not compromise convergence. Through
multiple experiments, we show that the convergence speed is within
82% of the baseline. We sacrifice slightly on convergence speed to
significantly improve the iteration speed and, thereby, TTA. We
leave the formal proof of convergence as future work.

Note that the proof of convergence for most acceleration strate-
gies used in ML was developed after the techniques gained pop-
ularity and widespread practical adoption. For example, gradient
sparsification/compression was shown to be practically feasible
and highly performant as early as 2015 [3, 44], leading to extensive
real-world usage, before a theoretical justification for convergence
was established in 2018 [4]. Similarly, the theoretical grounds for
staleness were established between 2011 and 2015 [18, 25, 34, 50]
and are still a topic of recent studies [8], while the technique has
been widely used in practice for scalable training for more than
a decade since 2009 [9, 24, 56]. Our contribution is to empirically
demonstrate the benefit of combining the two, calling for contribu-
tions in the theoretical realm.

Optimizing collectives in multi-strategy space. Aggregation
of compressed gradients is a challenge [40] because, at each worker,
the set of gradients with the largest magnitude may be different.
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Currently, StellaTrain employs a simple approximation by choosing
the top k/N gradients at each of the N workers so that at most k
gradients are updated across all workers. OmniReduce [15] pro-
posed transmission of only non-zero blocks in this setting. We can
expand the design space by allowing the careful elimination of non-
zero blocks. We leave the design of a compression-aware gradient
aggregation scheme with greater flexibility as future work.

Handling errors in bandwidth estimation. StellaTrain deter-
mines the compression ratio and batch size per device based on
the estimated network bandwidth. Errors in bandwidth estimation
could potentially affect pipelining. If the real bandwidth is higher
than the estimates, we underutilize the resources. On the other
hand, if the real bandwidth is lower, it can have significant adverse
effects on pipelining and, in turn, the convergence speed. Thus,
overestimation of bandwidth is more harmful than underestima-
tion for pipelining. Hence, we adopt a conservative approach to
bandwidth estimation and adaptation in StellaTrain.

Managing WAN challenges. While this work focuses on adapting
to bandwidth fluctuations for WAN training, we acknowledge that
WAN environments can experience other transient conditions such
as packet drops and timeouts, introducing additional challenges.
StellaTrain relies on the underlying TCP and ZeroMQ transports
to recover from packet loss and adjust transmission rates accord-
ingly, ensuring that training accuracy is not impacted. However,
extremely poor WAN conditions may warrant dynamic node man-
agement that allows new nodes to join or leave the training cluster
based on their network status, which could further improve training
efficiency and robustness. Finally, StellaTrain does not deal with
fault tolerance and recovery from failures.

7 Conclusion

StellaTrain is the first framework that takes a holistic approach
to accelerate model training in consumer-grade GPU clusters by
co-optimizing several acceleration techniques. We investigate the
design space of acceleration techniques and identify the key trade-
off knobs for reducing the time-to-accuracy. In addition to leverag-
ing well-known solutions, StellaTrain introduces novel strategies
for training acceleration, including a cache-aware gradient com-
pression scheme and a CPU-based sparse optimizer. Our evaluation
demonstrates that StellaTrain can accelerate distributed training
in multi-cluster settings with limited bandwidth by up to 104X,
while also adapting seamlessly to bandwidth fluctuations. Stella-
Train achieves up to 257.3x and 78.1x speedups on the network
bandwidths of 100 Mbps and 500 Mbps. StellaTrain also provides
significant speedup in fine-tuning LLMs. This work does not raise
any ethical issues.
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