
Accelerating Model Training in Multi-cluster
Environments with Consumer-grade GPUs

Hwijoon Lim

KAIST

Daejeon, Republic of Korea

hwijoon.lim@kaist.ac.kr

Juncheol Ye

KAIST

Daejeon, Republic of Korea

juncheol@kaist.ac.kr

Sangeetha Abdu Jyothi

UC Irvine & VMware Research

Irvine, California, USA

sangeetha.aj@uci.edu

Dongsu Han

KAIST

Daejeon, Republic of Korea

dhan.ee@kaist.ac.kr

Abstract
Rapid advances in machine learning necessitate significant com-

puting power and memory for training, which is accessible only to

large corporations today. Small-scale players like academics often

only have consumer-grade GPU clusters locally and can afford cloud

GPU instances to a limited extent. However, training performance

significantly degrades in this multi-cluster setting. In this paper,

we identify unique opportunities to accelerate training and pro-

pose StellaTrain, a holistic framework that achieves near-optimal

training speeds in multi-cloud environments. StellaTrain dynami-

cally adapts a combination of acceleration techniques to minimize

time-to-accuracy in model training. StellaTrain introduces novel

acceleration techniques such as cache-aware gradient compression

and a CPU-based sparse optimizer to maximize GPU utilization

and optimize the training pipeline. With the optimized pipeline,

StellaTrain holistically determines the training configurations to

optimize the total training time. We show that StellaTrain achieves

up to 104× speedup over PyTorch DDP in inter-cluster settings by

adapting training configurations to fluctuating dynamic network

bandwidth. StellaTrain demonstrates that we can cope with the

scarce network bandwidth through systematic optimization, achiev-

ing up to 257.3× and 78.1× speed-ups on the network bandwidths

of 100Mbps and 500Mbps, respectively. Finally, StellaTrain enables

efficient co-training using on-premises and cloud clusters to reduce

costs by 64.5% in conjunction with a reduced training time of 28.9%.

CCS Concepts
•Computer systems organization→Cloud computing; •Com-
puting methodologies→Machine learning.

Keywords
System for Machine Learning, Distributed Training, Cloud Com-

puting, Consumer-grade GPU

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0614-1/24/08

https://doi.org/10.1145/3651890.3672228

ACM Reference Format:
Hwijoon Lim, Juncheol Ye, Sangeetha Abdu Jyothi, and Dongsu Han. 2024.

Accelerating Model Training in Multi-cluster Environments with Consumer-

grade GPUs. In ACM SIGCOMM 2024 Conference (ACM SIGCOMM ’24), Au-
gust 4–8, 2024, Sydney, NSW, Australia. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3651890.3672228

1 Introduction
The field of machine learning (ML) has seen incredible growth,

driven by the development of increasingly complex models [7, 12,

51] and large datasets [10]. Since training thesemodels requiresmas-

sive amounts of computing power and memory, distributed training

across multiple nodes and GPUs has gained traction [26]. However,

large-scale distributed learning is expensive, requiring datacenter-

grade GPUs [30] that cost more than $10,000 per unit, high-speed

interconnects between GPUs (e.g, NVLink or NVSwitch [31]), and

GPU-dedicated networks reaching 800Gbps [45].

Many AI researchers leverage consumer-grade GPUs in lab-scale

settings for training due to their cost-effectiveness [11]. For in-

stance, RTX 4090 delivers 73% of the training speed compared to a

datacenter-grade A100 GPU at only 1/5 price. However, distributed

training with consumer-grade GPUs is extremely slow, as gradi-

ent exchange is often bottlenecked by scarce network bandwidth,

eventually leading to GPU underutilization [2]. Such bottlenecks

are even worse in hybrid cluster settings when researchers aug-

ment the local lab resources with limited cloud GPU instances, and

train a single model collaboratively across clusters separated by the

Wide Area Network (WAN) with constrained and highly variable

bandwidth [20] (Figure 1).

Existing approaches to accelerate training, such as gradient com-

pression [3, 4, 14, 19, 38, 43, 48] and pipelining [23, 33, 41, 46, 53],

operate in a datacenter environment with 100+Gbps GPU-to-GPU

connectivity. These solutions require inter-node bandwidths of at

least 25Gbps [41, 45, 46] to achieve high efficiency. However, in a

typical WAN environment where the bandwidth is orders of mag-

nitude lower, these methods face substantial challenges. First, in

systems that rely on synchronous updates, existing pipelines are in-

effective even with compression because of the lengthened gradient

transfer time, leading to GPU pipeline stalls. Second, systems that

rely on asynchronous updates [8, 49, 52, 54] result in an excessive

degree of staleness, significantly slowing down model convergence.

707

This work is licensed under a Creative Commons Attribution‐NonCommercial‐
ShareAlike International 4.0 License.

https://doi.org/10.1145/3651890.3672228
https://doi.org/10.1145/3651890.3672228
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3651890.3672228&domain=pdf&date_stamp=2024-08-04

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lim et al.

On-premises Cluster A Cluster at Cloud
Server 1

CPU

Server 2

On-premises Cluster B

1 – 10 Gbps

Server 1

CPU

Server 2

WAN bandwidth
100 Mbps – 1 Gbps

RTX 3090 RTX 3060 V100

10 – 40 Gbps

CPU

Server 1

CPU

Server 2

1 – 10 Gbps

RTX 2080 RTX 3090

CPU

Bottleneck
Increased cloud costs due to

increased overall training timeGPU underutilization due to
network constraints

Reduced GPU efficiency due
to differences in GPU

compute speeds CPU

V100

Figure 1: A multi-cluster environment with two on-premises lab clusters and a cloud cluster.

In this paper, we present StellaTrain, the first framework for

distributed training that minimizes the time-to-accuracy of model

training in multi-cluster environments separated by a WAN. It is

the first to achieve near-optimal training speeds in multi-cloud

environments. We introduce two key enablers to achieve such high

training speeds. First, StellaTrain employs gradient compression to

effectively use the network in low-bandwidth environments and ex-

ploits the resulting sparsity of gradients to devise computationally

efficient compression and optimization.

This delivers a 128× speedup in optimization at 99% compression,

allowing it to be offloaded to the CPU, further streamlining the

training pipeline. Second, StellaTrain introduces layer-wise partial

staleness, in which some layers immediately receive the gradient

update, but for other layers, it is delayed by one iteration. This

ensures that gradient updates are performed synchronously with

minimum staleness and that the transfer of compressed gradient is

fully interleaved with computation.

However, introducing partial staleness and compression simulta-

neously invites new challenges. In contrast to existing systems that

rely on synchronous updates, the use of partial staleness makes the

convergence speed more sensitive to compression rate and training

batch size. This means that blindly optimizing for GPU utilization

may not minimize Time-To-Accuracy in our environment. In ad-

dition, the optimal values of hyperparameters, such as batch size

and compression rate, change dynamically with the changing WAN

bandwidth, and hence, these parameters must be adapted on the

fly. Reduced WAN bandwidth, for example, requires a higher com-

pression rate and/or larger batch sizes, but these adjustments may

affect convergence speed, requiring careful real-time optimization.

To this end, we reassess the impact of various hyperparameters

under staleness on the two key determinants of TTA—convergence

speed and iteration speed. Finally, to find the optimal batch size

and compression rate given the current bandwidth, StellaTrain em-

ploys Bayesian optimization and the Nelder–Mead method, which

effectively locates an optimal point out of a large search space.

Our evaluation shows that StellaTrain can effectively minimize

Time-To-Accuracy (TTA) with consumer-grade GPUs spread over

multiple clusters. Our implementation demonstrates that Stella-

Train successfully adapts the training strategy to variable network

conditions [13] and reduces TTA by up to 104× compared to Py-

Torch DDP [26] in environments with variable WAN bandwidth.

10

100

1000

1 10 100 1000

ViT-B
CloudLab WAN Range 10Gbps

40GbpsResNet

VGG

B
at

ch
 P

ro
ce

ss
in

g
Ti

m
e

(m
s)

Model Size (MB)

Figure 2: Model size vs. batch processing time. The band-
width lines show the ratio of model size to batch processing
times. Most models require large bandwidths for gradient
exchange, falling outside of the WAN bandwidth range of
CloudLab [13].

We verify that StellaTrain reduces TTA by up to 257.3× and 78.1×
compared to PyTorch DDP in 100Mbps and 500Mbps inter-cluster

settings, respectively. Finally, we show that StellaTrain can reduce

cloud costs by 64.5% while also reducing the training time by 28.9%

by leveraging a combination of the public cloud and on-premises

cluster in a multi-cluster setup.

2 Motivation
2.1 DL training in lab-scale clusters
Compared to data center GPUs, consumer-grade GPUs are slower

but are more cost-effective. For example, NVIDIA DGX A100 [29],

facilitates data transfer at a rate of 2.4 TB/s over NVSwitch for intra-

node communications and up to 250 GB/s through InfiniBand for

inter-node communications, thus significantly accelerating training

at scale. However, it costs $14,999 per unit, nearly 10× the price of an
NVIDIA GeForce RTX 3090 server, which relies on slower commu-

nication channels—PCIe for intra-GPU and Ethernet for inter-node

communications. Despite the limited connectivity, servers with

consumer-grade GPUs provide nearly half the performance [6] of

an A100 at one-tenth of the price.

Owing to their cost-effectiveness, many academic researchers

and ML practitioners employ consumer-grade GPUs in their on-

premises lab settings. To verify the model validity and get quick

feedback, researchers prefer to have GPU resources available at all

708

Accelerating Model Training in Multi-cluster Environments with Consumer-grade GPUs ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Strategy Iter. Speed Conv. Speed TTA

Gradient compression (𝑟) , / ?

Batch size (𝑏) , ? ?

Staleness (𝑠) , / ?

Pipelining , No Effect ,
Sparse optimizer , No Effect ,
Cache-aware compression , No Effect ,

Table 1: Impact of acceleration strategies on training met-
rics. Each techniquemay positively (marked,) or negatively
(marked /) affect performance. The performance of com-
ponents marked with ? will vary according to the choice of
parameters.

times, rather than waiting in a job queue on a shared cluster. Using

a public cloud is not a viable option due to its significant cost (e.g.,

$23,924/month for 8 A100 GPUs [39]).

As ML practitioners scale the models and work with larger

datasets, the computing requirements may surpass what is feasible

on on-premises GPU clusters, resulting in very long turnaround

times for each training epoch. Thus, they may want to augment

their computing power with remote resources to accelerate train-

ing. For example, collaborating academic groups can pool their

resources to improve the overall performance of large-scale train-

ing jobs. One such model is CloudLab clusters [13], which have

a wide variety of GPUs scattered over a wide-area network for

shared academic use. Alternatively, academics may want to use

public cloud resources alongside their lab resources.

The core problem in training under such an environment is that

the transmission of gradients under the relatively low and fluc-

tuating bandwidth conditions of the WAN significantly hampers

the performance of high-end GPUs. Cutting-edge models require

the transfer of tens of gigabytes of gradient data, as illustrated in

Figure 2. The size of the model divided by the processing time of

a training batch indicates the required bandwidth represented as

crosses. The bandwidth requirements of most models fall outside

the range of WAN bandwidth measured between CloudLab clus-

ters [13] in Utah and Wisconsin, which fluctuates between 50Mbps

and 600Mbps with an average of 193Mbps. In our experiment with

1Gbps inter-node connection, training a ResNet50 model leads

to scenarios where clusters utilize only 17% of utilization in the

cloud during the entire training duration. This inefficiency results

in extended training time and wasted resources. StellaTrain en-

sures the full utilization of all available GPUs across multi-clusters,

effectively eliminating idle wait time. Consequently, StellaTrain

can deliver as much training performance in the multi-cluster as a

purely public cloud-based setup. As we show in our evaluation, this

reduces training time and cloud resource usage, resulting in cost

savings of 64.5% and 45.1% for FP32 and FP16 training, respectively.

2.2 Need for Direction Optimization of TTA
Different acceleration strategies have varying impacts on TTA,

which is a product of iteration speed and convergence speed. Some

strategies, such as pipelining, improve the iteration speed without

any adverse impact on the convergence speed. However, the impact

0 0.2 0.4 0.6 0.8 1

(64, 95%)
(128, 90%)
(192, 85%)
(256, 80%)
(384, 70%)
(512, 60%)

Relative Convergence Speed

Figure 3: Convergence speed varies across various configura-
tions of (batch size, compression rate), even if they require
the same bandwidth.

of other solutions, such as gradient compression and staleness,

can be double-edged—they improve the iteration speed but reduce

the convergence speed. Table 1 summarizes how the strategies of

StellaTrain impact one or both factors that determine the TTA: the

iteration time and the convergence speed. Among the strategies,

the bottom three in the table—pipelining, sparse optimizer, and

cache-aware gradient compression—are all system optimizations

that improve GPU utilization and thus improve the iteration speed

without affecting the convergence speed.

The top three strategies have tunable parameters, depending

on which the overall impact is determined. Hence, these strategies

need to be employed cautiously. Determining the optimal config-

uration of the techniques above is challenging, even in isolation,

because it depends on the variable network condition and the model

complexity/size. Moreover, when two or more acceleration tech-

niques are employed simultaneously, tuning one technique could

inadvertently hurt convergence speed; hence, joint optimization

of parameters is necessary. For example, two configurations that

achieved the same iteration time and TTA without staleness may

exhibit different convergence speeds with stale gradient updates

(delay of one iteration). Figure 3 shows the convergence speed for

different combinations of batch size and compression rate. Although

they are all equivalent in terms of iteration time, their convergence

speeds, and thus their TTA, are different.

Due to the interdependence of these strategies, predicting the

impact of configuration changes in the multi-strategy system is

significantly more complex. Hence, a holistic approach for mini-

mizing TTA is crucial in the multi-cluster environment separated

by the WAN. Finally, since the network bandwidth between clus-

ters is scarce and subject to frequent fluctuations [37], the optimal

configuration can vary with time based on network conditions.

3 Optimizing Training Pipeline
StellaTrain revisits CPU offloading and model staleness to stream-

line the pipeline with the following observations:

• Direct data exchange between GPUs [32] is not supported in

consumer-grade GPUs. Thus, CPUs play a pivotal role in gra-

dient transfer. The presence of CPUs on the path presents an

opportunity for offloading tasks, such as compression and model

optimization. However, optimization and compression are an

order of magnitude slower with CPUs than with GPUs. Thus,

there is a critical need to enhance CPU-based optimization.

709

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lim et al.

GPU

PCIe

PCIe

Optimizer

CPU

CPU

Iteration 𝑛

1 2 3 4 4 3 2 1 1 2 3 4

Forward Backward Forward

Gradient Copy

LAN/WAN

Gradient Copy to GPU

Comp.

Copy

GPU IDLE

Iteration 𝑛 + 1

Inter-node Gather

Copy

(a) GPU-based Compression (e.g., BytePS-Compress [55])

GPU

PCIe

PCIe

CPU

CPU

Iteration 𝑛

1 2 3 4 4 3 2 1 1 2 3 4 4 3 2 1 1 2 3 4 4 3 2 1

Forward Backward Forward Backward Forward Backward

Iteration 𝑛 + 1 Iteration 𝑛 + 2

4 3 2Gradient Copy 4 3 2 1 4 3 2

First layer is
prioritized Compress

Gather

1 2 3 4

LAN/WAN

Model Copy to GPU

Inter-node GatherInter-node Gather

1

Optimizer

Compress

Gather

(b) StellaTrain (Ours)

Figure 4: Comparison of training pipelines.

• In a WAN environment where the bandwidth is often orders of

magnitude lower than datacenter networks, transferring gradi-

ents in time for the next iteration is impossible. Such synchro-

nous update inevitably results in underutilization of GPUs even

with gradient compression, as shown in Figure 4(a).

StellaTrain strategically offloads compression and optimization

to the CPU and adopts carefully designed partial staleness in the

gradient update, creating a pipeline that fully utilizes the GPUs,

as shown in Figure 4(b). The CPU-based sparse optimizer (§3.1)

and gradient sparsification/compression (§3.2) combined delivers a

128× speed-up by leveraging sparsity in computation and cache-

awareness. StellaTrain schedules gradient transfers by prioritizing

layers that appear first in the pipeline and leverages partially stale

updates for the remaining layers (§3.3).

Benefits. As a whole, our pipeline design offers three key bene-

fits. First, the staleness allows us to efficiently overlap GPU-based

computations (both forward and backward passes) with CPU-based

operations (such as compression and optimization) and commu-

nication (both within and across nodes). Second, the CPU offload

design leverages gradients already residing in the CPU memory for

gradient transfer. Third, it frees up GPU resources for the more com-

putationally intensive forward and backward passes. Consumer-

grade GPUs, limited by memory, can only utilize small batch sizes.

This causes the optimization and compression phases to consume

a relatively larger segment of the processing time. They account

for more than 43% of the total processing time. By offloading these

compute-intensive tasks to the CPU, StellaTrain not only makes

better use of available resources, but also avoids a major slowdown

in the overall training process, offering up to 7.6× acceleration.

3.1 CPU-based Sparse Optimizer
The optimization step involves large matrix operations between the

parameter and gradient tensors. These operations are slow on CPUs

because of the inherently limited computational parallelism. For

example, optimizing a ViT-B model with a CPU takes 17.2× more

time than with a GPU (RTX 2080 Ti). To accelerate optimization

at the CPU, we introduce sparse optimizer that takes advantage of
two key characteristics:

• Independence of each model parameter: Each model param-

eter is updated independently, a feature that holds true for most

standard optimization algorithms, including the Stochastic Gra-

dient Descent (SGD) [36]. This independent update procedure

can be generally represented by the equation 𝑥 ← 𝑥 + 𝜆𝑔, where
𝜆 stands for the learning rate, and 𝑔 signifies the gradient of the

parameter.

• Significantly fewer sparsified gradients: In contexts where

compression (sparsification) is utilized, the number of elements

in the sparsified gradients is greatly reduced compared to the

original set of parameters.

Existing optimizers [46] that deal with compressed gradients

ignore these characteristics and naïvely perform decompression,

i.e., generating the dense gradient tensor by filling zero values for

sparsified elements, before applying the optimization. As a result,

regardless of how sparse the gradients are, the optimization time

stays the same.

In contrast, our sparse optimizer incurs computation linearly

proportional to the number of non-zero gradients, delivering sub-

stantial benefit in our environment where gradients are heavily

compressed. The optimizer directly performs optimization on spar-

sified gradients without decompression into a dense matrix. Lever-

aging the independence of each model parameter, it applies updates

element-by-element, exclusively to parameters associated with non-

zero gradients, avoiding the computational redundancy of updating

parameters with zero gradients. Consequently, we observe a sub-

stantial reduction in total computation by a factor of
1

1−𝑟 , where
𝑟 refers to the compression rate. For example, 99% compression

(transferring 1% of gradients) results in 1% of computation.

Behaviorally, a minor difference exists only formomentum-based

optimizers that update the parameters using a moving average,

even when the current gradient is zero. Since sparse optimizer in
StellaTrain does not update the parameter when its gradient value

is zero, it may lead to a small error. However, our empirical analysis

indicates the resulting error is negligible and has a minor effect on

the speed of convergence.

3.2 CPU-based Gradient Sparsification
Although the sparse optimizer significantly reduces computational

demands during optimization, it does not reflect the same efficiency

in reducing the optimization time, i.e., a 99% compression of gradi-

ents does not result in a 99% reduction in the optimization time. This

is because applying the sparse gradient in the optimization phase

results in random access to the model parameters. This does not

work well with the CPU’s mechanism of fetching data from DRAM

in cache-line size blocks (64 bytes or 16 four-byte elements) [21].

Hence, the benefits of sparse optimization can be fully harnessed

710

Accelerating Model Training in Multi-cluster Environments with Consumer-grade GPUs ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

only when combined with a more cache-friendly approach in gra-

dient compression.

Cache-aware sparsification. To reap the full benefit of sparse

optimization, we design a novel compression scheme that takes into

account the cache-line size for determining the top elements. We

extend the threshold-𝑣 [14], which is known to be faster than the

Top-𝑘 method [3] that requires partial sorting. Unlike the vanilla

version, which selects the top 𝑘 elements using a threshold, Stella-

Train selects the top
𝑘
16

cache-aligned blocks based on the highest

cumulative magnitude within each block and then selects all 16 ele-

ments within these chosen blocks for update. This strategy ensures

that every element in the CPU cache is fully utilized, thereby in-

creasing the cache hit ratio and reducing CPU pipeline stalls. This

cache-aware threshold-𝑣 scheme itself enables up to 7.6× faster

sparse optimization than the vanilla version, while also accelerat-

ing the compression itself by up to 3.3×. This scheme exhibits only

a marginal slowdown in model convergence, as shown in Section 5.

StellaTrain leverages an automated feedback loop to adjust the

threshold, 𝑣 . First, StellaTrain filters blocks of gradients, each equiv-

alent to the size of the cache line, so that the sum of the magnitudes

of the gradients within a block exceeds the threshold, 𝑣 . Next, the

system checks if the number of filtered blocks is greater than or

smaller than 𝑘
block

, the target value. Note that 𝑘
block

=
𝑘
16
, since

the cache-line blocks consist of 16 elements. When the number

of filtered blocks is greater than 𝑘
block

, StellaTrain increases 𝑣 ;

conversely, if the number of filtered blocks is less than 𝑘
block

, Stella-

Train reduces 𝑣 . StellaTrain uses an Additive Increase Multiplicative

Decrease (AIMD) based estimator to update the threshold value 𝑣 .

The multiplicative decrease phase ensures that the system backs

off quickly when the total load exceeds the threshold. To further

improve efficiency, the compressed gradients are stored in COO

(Coordinate) format—instead of storing the entire gradient matrix,

we only store the non-zero values along with their corresponding

indices.

The cache-aware threshold-𝑣 scheme offers several performance

advantages. First, it minimizes the number of blocks fetched to the

CPU cache. For a given target 𝑘 , cache-aware threshold-𝑣 will fetch

at most ⌈ 𝑘
16
⌉ blocks, while the vanilla threshold-𝑣 can potentially

fetch up to 𝑘 in the worst case. Second, when a block is accessed, the

cache-aware threshold𝑣 updates all parameters within the block,

resulting in a near-perfect cache hit rate. In contrast, the vanilla

threshold-𝑣 may update only a single parameter within a block of

16, leading to a cache hit rate as low as 6.25% in the worst case. This

results in a net speed-up of 128× in CPU-side optimization.

3.3 Efficient Pipeline Management
StellaTrain carefully schedules the tasks in the CPU pipeline to

minimize training stalls and improve training efficiency.

Priority-based task scheduling. Traditional DNN training sched-

uling pipelines use a first-come, first-served approach (FCFS), where

tasks are processed in the order they arrive, without considering

that the gradients of the initial layers (those closer to the input) are

computed last, but the updated parameters of the initial layers are

needed first in the next iteration. This results in suboptimal use of

computational resources, leaving GPUs underutilized while waiting

for the necessary gradients from the initial layers. In addition, this

GPU

CPU

CPU

Iteration 𝑛

Forward Backward

LAN

Compress
Gather

Optimize

1 2 3 4 5 6 6 5 4 3 2 1

6 5 4 2 1 3

5 26 1 3 4

6 5 2 1 3 4

1 2 3 4 5 6 6 5 4 3 2 1 1 2 3 4 5 6 6 5 4

Iteration 𝑛 + 2
Forward Backward

Layer 6 can use fresh parameters

Iteration 𝑛 + 1

Figure 5: StellaTrain allows instant updates for some layers
using fresh parameters from the previous iteration.

delay in the initial layers can propagate through subsequent layers,

bloating the entire iteration time.

To address this, StellaTrain adopts a priority-based scheduling
scheme based on the Earliest Deadline First (EDF) algorithm. Unlike

the FCFS approach, StellaTrain gives higher priority to tasks associ-

ated with earlier training iterations and initial layers (Figure 4(b)).

Prioritizing the initial layers effectively prevents the GPU pipeline

from stalling and maximizes GPU utilization by focusing on re-

ducing delays in the critical path. However, currently executing

lower-priority tasks are allowed to continue without pre-emption

to ensure efficient resource usage.

Although prior work has employed priority-based scheduling

for network transfers between workers [16, 22], StellaTrain is the

first to leverage layer-wise prioritization for intra-node pipelining,

to the best of our knowledge. Prioritization emerges as a unique

opportunity in the intra-node context with StellaTrain due to the

strategic combination of bounded staleness and CPU offloading.

Partially stale update. Despite the priority-based task scheduling,
there are instances where the parameters of the later layers (those

closer to the output) are updated before those of the initial layers

due to the unfinished backward pass on initial layers. In such cases,

we efficiently schedule tasks for the later layers ahead of those

for the initial layers without waiting for the initial layers to finish

the backward pass. For example, in Figure 5, tasks associated with

Layer 6 are scheduled earlier than any other layers, as the backward

pass on other layers has not finished.

This provides an opportunity to leverage freshly updated pa-

rameters for some layers from the immediately preceding iteration

to proceed with the next iteration. For example, in Figure 5, new

parameters of Layer 6 are ready before the forward pass of Layer 6

in iteration 𝑛 + 1. We find that 15% of the layers can benefit from

such instantly updated parameters on the ViT-B model.

Recognizing this, StellaTrain introduces partial staleness—a max-

imum staleness limit of 1 applies to all layers while also allowing

immediate update of some layers without any staleness. If the

parameters for a particular layer are updated before the next itera-

tion’s forward pass begins, StellaTrain employs the freshly updated

parameter, potentially improving the convergence speed. Note that

this approach of training models with inconsistent staleness still

provides convergence guarantees [8].

4 Holistic minimization of TTA
With its optimized pipeline, StellaTrain performs co-optimization

to determine training configurations that minimize TTA. For this, it

employs a centralized controller that optimizes GPU configurations

across heterogeneous clusters, as shown in Figure 7. Unlike hyper-

parameters in the ML context—such as learning rate, optimizer, and

learning rate scheduling—which are usually determined through a

711

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lim et al.

Maps to convergence
speed space

G
ra

d
ie

n
t

C
o

m
p

re
ss

io
n

 R
at

e

True Optimal

C
o

m
p

re
ss

io
n

 R
at

e

Total Batch Size

(a) Configuration space for iteration speed

Slo
w

C

o
n

vergen
ce

Fast
C

o
n

vergen
ce

(b) Convergence speed

Figure 6: Co-optimizing strategies: Mapping between (a) Con-
figuration space of iteration speed and (b) Configuration
space of convergence speed.

random search or a rule of thumb [42], configurations to optimize

TTA can be determined systematically.

The co-optimization problem can be visualized as shown in Fig-

ure 6. In the three-dimensional space of gradient compression rate,

network bandwidth, and per-device batch size in Figure 6a, the

optimal operating points in terms of the iteration speed of a given

model lie on an intersecting line between the gray surface (de-

termined by Equation (6)) and a plane determined by the current

network bandwidth. The goal of the co-optimization problem is

to identify the optimal point such that the product of iteration

speed and convergence speed (represented as color in Figure 6b) is

maximized.

4.1 Optimization Cycle
StellaTrain implements a centralized controller that collects teleme-

try data from GPUs and determines the optimal configuration of

(𝑟, ®𝑥) to minimize TTA, directing GPUs to use the updated configu-

ration, as illustrated in Figure 7. Before training, the controller loads

a model profile obtained via offline profiling. During training, the

controller periodically collects the telemetry data from each worker

and estimates the performance of each GPU and the network band-

width. Next, the controller determines the optimal compression

rate and per-device batch size based on real-time telemetry data

and the model profile. Finally, the controller applies the updated

configurations to the workers asynchronously.

In detail, before training, the controller loads the model profile,

𝑔(𝑟,∑𝑖 𝑥𝑖), which is a map from compression rate and total batch

size to convergence speed, obtained from offline Bayesian optimiza-

tion (§ 4.3). During training, the controller collects telemetry data

from multiple GPUs, which includes the current batch size 𝑥𝑖 , GPU

training throughput 𝑓𝑖 (𝑥𝑖), and GPU idle rate. Upon receiving this

telemetry (❶), the controller performs the following steps:

• ❷GPU Throughput Estimation: Using 𝑥𝑖 and 𝑓𝑖 (𝑥𝑖), the controller
updates the parameters of the GPU throughput model, 𝛼𝑖 and

𝛽𝑖 , for each GPU using the Nelder-Mead method.

• ❸ Network Bandwidth Estimation: Based on the idle rate of the

GPU, it updates the estimated bandwidth of the network 𝐵. We

GPU 1

GPU 2

GPU 3

GPU n

❶
Telemetry

❺
Async update

ControllerWorkers

𝑓𝑖 𝑥𝑖
❷ Update 𝛼𝑖, 𝛽𝑖

❸ Update 𝐵

(𝑟, Ԧ𝑥)

Offline ProfilingDNN Model Model
Profile

⓿ Bayesian Optimization

GPU Idle Time
Fraction

𝛼𝑖, 𝛽𝑖

𝐵

Optimal Configuration Search

❹ Find (𝑟, Ԧ𝑥)
ҧ𝑔(𝑟, ∑𝑥)

GPU 4

GPU 5

GPU 6…

GPU Throughput Estimation

Network Bandwidth Estimation

Figure 7: StellaTrain finds the best setting of (𝑟, 𝑥) that min-
imizes TTA using GPU training throughput and network
bandwidth estimation based on the telemetry.

use a feedback loop to estimate the network bandwidth 𝐵 from

the idle rate of the GPU. When the idle rate of the GPU is less

than 5%, the controller increases the estimated bandwidth, as

this indicates that the network bandwidth is overestimated. Oth-

erwise, the controller reduces the estimated bandwidth.

• ❹ Optimal Configuration Search: Leveraging 𝑓𝑖 (𝑥𝑖), 𝑔(𝑟,
∑
𝑥),

and 𝐵, the controller finds the best combination of (𝑟, ®𝑥) that
minimizes Equation (1), given the constraint Equation (6).

After finding the optimal (𝑟, ®𝑥), the controller directs the GPUs to
use the updated configuration from the designated iteration (❺).

Thus, this procedure does not slow down the training.

4.2 Optimization Objective
StellaTrain minimizes a weighted sum of two objectives—TTA and

iteration time variance. It employs the Nelder-Mead method, a

simplex-based optimization technique for nonlinear optimization

problems, to minimize the resulting objective function, shown in

Equation (1).

TTA + 𝜆 × iteration time variance across GPUs (1)

Minimizing iteration time variance across GPUs optimizes for

high utilization of GPU resources. The optimization problem is also

subject to a bandwidth-based constraint on the compression rate

𝑟 . Next, we describe our steps in deriving the equation of the two

objectives and the bandwidth constraint.

Objective 1: Variance in iteration time. Given a model, the

training throughput depends on the batch size. When the batch

size is less than a certain threshold (𝛼𝑖), GPUs are not fully utilized.

With small batches, gradient transfers occur more frequently, of-

ten limiting the throughput. Thus, training throughput increases

linearly with batch size up to a threshold until the GPUs are fully

saturated. The throughput of GPU 𝑖 given the batch size 𝑥𝑖 can be

modeled as:

𝑓𝑖 (𝑥𝑖) = min(𝛽𝑖
𝛼𝑖
𝑥𝑖 , 𝛽𝑖) (2)

where 𝛼𝑖 and 𝛽𝑖 respectively denotes the batch size threshold to

saturate GPU 𝑖 and the training throughput of GPU 𝑖 after saturation.

Iteration time at GPU 𝑖 then can be formulated as
𝑥𝑖

𝑓𝑖 (𝑥𝑖) , obtained
by dividing the batch size 𝑥𝑖 assigned to GPU 𝑖 by the throughput of

GPU 𝑖 . We provide the values of 𝛼𝑖 and 𝛽𝑖 for selected models and

712

Accelerating Model Training in Multi-cluster Environments with Consumer-grade GPUs ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

RTX 2080 Ti RTX 3090 RTX 4090

ResNet152 [17] (32, 118) (48, 183) (64, 270)

ViT-B-16 [12] (20, 99) (32, 148) (28, 300)

Swin-B [27] (16, 80) (36, 112) (40, 217)

Table 2: Tuple of (batch size threshold 𝛼 to saturate GPU,
training throughput 𝛽 (image/s) after saturation).

GPUs in Table 2. Note that this saturation occurs with relatively

small batch sizes compared to the maximum batch size that can be

trained on a device without gradient accumulation. For instance,

RTX 4090 can train ResNet50 with a batch size of up to 256, but

training throughput saturates early at a batch size of 64. This allows

StellaTrain to select the best per-device batch size that maximizes

the convergence speed.

To maximize GPU utilization in a heterogeneous GPU cluster,

StellaTrain allocates batch sizes proportional to each device’s com-

putational speed. It aims to minimize iteration time discrepancies

across GPUs by reducing the variance in training time per iteration

(variance of
𝑥𝑖

𝑓𝑖 (𝑥𝑖) across different GPUs 𝑖). Instead of directly tar-

geting the variance, however, StellaTrain focuses on minimizing

the relative standard deviation (also known as the coefficient of

variation)

𝜎𝑓

𝜇𝑓
shown in Equation (3), which normalizes the standard

deviation against the mean, thus diminishing the influence of the

mean.

𝜎𝑓

𝜇𝑓
=

√︃∑𝑛
𝑖 (

𝑥𝑖
𝑓𝑖 (𝑥𝑖))

2 − (∑𝑛
𝑖

𝑥𝑖
𝑓𝑖 (𝑥𝑖))

2∑𝑛
𝑖

𝑥𝑖
𝑓𝑖 (𝑥𝑖)

(3)

Objective 2: TTA. StellaTrain aims to minimize the number of

additional training epochs to achieve the same training accuracy

while maximizing the training throughput. We first formulate the

global iteration speed by dividing the total batch sizes (

∑
𝑖 𝑥𝑖) by

the iteration time of the slowest GPU 𝑘 , since the global iteration

speed is determined by the slowest device.∑︁
𝑖

𝑥𝑖 ×
𝑓𝑘 (𝑥𝑘)
𝑥𝑘

s. t. 𝑘 = argmax

𝑖

𝑥𝑖

𝑓𝑖 (𝑥𝑖)
, (4)

Leveraging Equation (4) and the surrogatemodel for convergence

speed 𝑔(𝑟,∑𝑖 𝑥𝑖) (detailed in Section 4.3), the objective function to

minimize TTA can be expressed as:

1 + 𝑔(𝑟,∑𝑖 𝑥𝑖)
(∑𝑖 𝑥𝑖) ×

𝑓𝑘 (𝑥𝑘)
𝑥𝑘

s. t. 𝑘 = argmax

𝑖

𝑥𝑖

𝑓𝑖 (𝑥𝑖)
(5)

Bandwidth constraint. When the network bandwidth is insuffi-

cient to complete the gradient exchange within a single iteration

time, the iteration time increases. To prevent such a slowdown, we

impose the following constraint on the compression rate, 𝑟 :

𝑟 ≥ 1 − 𝐵

𝑚
× 𝑥𝑖

𝑓𝑖 (𝑥𝑖)
(6)

where 𝐵 and𝑚 represent the link bandwidth and the model size,

respectively. Note that 𝑟 should be dynamically adjusted based on

the change in the link bandwidth 𝐵 and the time taken for the

forward and backward pass (
𝑥𝑖

𝑓𝑖 (𝑥𝑖)).

Algorithm 1 Modeling convergence speed with Bayesian Opti-

mization based on compression rate and total batch size

1: function TestRun(𝑟, 𝑏, 𝑠)

// 𝑟 : compression rate, 𝑏: batch size, 𝑠: staleness

2: D
sub
← sample(D, 0.5)

3: for (x, y) in get_batches(D
sub

, 𝑏) do
4: L = ℓ (y, 𝑓 (x;𝜃𝑛−𝑠))
5: 𝜃𝑛+1 ← optimizer(𝜃𝑛, compress(∇𝜃𝑛−𝑠L, 𝑟))
6:

¯L ← 0.99 · ¯L + (1 − 0.99) · L
7: end for
8: return ¯L
9: end function
10: Init Gaussian Process (GP)

11: 𝑔(𝑟, 𝑥) ← surrogate model derived from the GP

12: 𝑦
base
← TestRun(𝑟, 𝑥min+𝑥max

2
, 0)

13: for 𝑡 = 1 to 𝑁 do
14: 𝑟 ← uniform random sampling in [0, 0.999]

15: Select 𝑥
total

by optimizing the acquisition function

(Expected Improvement) over [𝑥min, 𝑥max]
16: 𝑦 ← TestRun(𝑟, 𝑥

total
, 1)

17: Update the Gaussian Process with (𝑟, 𝑥
total
) → 𝑦 − 𝑦

base

18: end for
19: return 𝑔(𝑟, 𝑥)

4.3 Modeling Convergence Speed
StellaTrain estimates the convergence speed 𝑔(𝑟, 𝑥), given the com-

pression rate 𝑟 and total batch size 𝑥 =
∑𝑛
𝑖 𝑥𝑖 , which is used for

TTA optimization in Equation (5). Ideally, we would like to create

a detailed model which shows the estimate of the fraction of extra

trainings epochs needed to attain equivalent model accuracy, as in

Figure 6(b). To this end, we define 𝑔(𝑟, 𝑥) as the relative difference
in loss after half an epoch of probe training with the total batch

size 𝑥 , comparing the training loss with applied compression and

staleness against the loss with neither. However, profiling every

potential setting of (𝑟, 𝑥) is computationally expensive due to the

large search space of possible configurations, where 𝑟 can take any

value in the range [0, 1), and 𝑥 can be up to the sum of the maxi-

mum batch sizes for all GPUs. To address this, StellaTrain employs

Bayesian optimization (BO) to reduce the number of probe train-

ing runs (line 1-9 in Algorithm 1) while obtaining a 𝑔 that closely

approximates 𝑔.

BO builds a surrogate statistical model (e.g., Gaussian process)

to approximate the expensive objective function 𝑔(𝑟, 𝑥) based on

past evaluation points. An acquisition function uses this surrogate

model to determine the next most promising point (𝑟, 𝑥) to evaluate
𝑔(𝑟, 𝑥), iteratively updating the surrogate for 𝑁 steps. This allows

BO to find a good approximation 𝑔(𝑟, 𝑥) ≈ 𝑔(𝑟, 𝑥) with many fewer

expensive 𝑔(𝑟, 𝑥) evaluations than exhaustive search over (𝑟, 𝑥).
We build a surrogate model 𝑔(𝑟, 𝑥) that closely approximates

𝑔(𝑟, 𝑥) from offline profiling (Algorithm 1). We leverage Expected

Improvement (EI) as the acquisition function, which is used to

determine the next point to evaluate the surrogate model 𝑔(𝑟, 𝑥),
iteratively updating the Gaussian Process (GP) for 𝑁 steps. Un-

like the online, dynamic optimization of Section 4.1, this Bayesian

optimization process is done offline in the profiling phase, once

713

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lim et al.

0.001

0.01

0.1

1

ResNet152 ViT-Base-16 Swin-B

PyTorch DDP PyTorch DDP + Hetero
BytePS Espresso
Espresso + Hetero BytePS-Compress
BytePS-Compress + Hetero StellaTrain

Re
la

tiv
e

TT
A

(a) Speedup in End-to-End TTA (log-scale)

0

0.05

0.1

ResNet152 ViT-Base-16 Swin-B

BytePS-Compress + Hetero StellaTrain

Re
la

tiv
e

TT
A -53.7%

-45.7% -60.8%

(b) Speedup in End-to-End TTA (linear-scale)

0

50

100

150

200

250

300

0 20 40 60

StellaTrain PyTorch DDP

PyTorch DDP + Hetero Espresso

Espresso + Hetero BytePS-Compress

BytePS-Compress + Hetero

It
er

at
io

n
 S

p
ee

d
 (

Im
ag

e/
se

c)

Time (sec)

(c) Bandwidth Adaptation

Figure 8: Performance of StellaTrain in a multi-cluster environment.

per each model architecture before the actual training process be-

gins. Specifically, we use a variant of EI that focuses on minimizing

𝑔(𝑟, 𝑥) for a given 𝑟 , rather than finding the optimal pair (𝑟, 𝑥)
that minimizes 𝑔(𝑟, 𝑥). To achieve this, our custom EI randomly

selects 𝑟 and chooses 𝑥 that maximizes the expected decrease in the

loss, thereby ensuring uniform exploration of potential 𝑟 values,

which improves robustness to different 𝑟 values (line 15-16 in Al-

gorithm 1). We find that our approach with BO can achieve a high

quality approximation of 𝑔(𝑟, 𝑥) after exhaustively exploring only

𝑁 = 30 steps, which is only 0.003% of what would be required for

exhaustively exploring the entire search space (i.e., 1000 𝑟 values (0

to 0.999) and 1021 𝑥 values (4 to 1024)).

5 Evaluation
We evaluate the performance of StellaTrain to answer the following

questions:

• How much improvement in TTA does it deliver? (§5.1)

• What impact do the batch size adaptation and cache-aware com-

pression have on the training pipeline? (§5.2)

• How efficient are the CPU-based schemes, cache-aware com-

pression, and sparse optimizer? (§5.3)

Implementation. We implement StellaTrain in 4.7k lines of C++

and provide a model wrapper for compatibility with existing Py-

Torch training workflows. It leverages 16 worker threads per GPU

in a thread pool model to maximize resource utilization. It avoids

busy waiting for CUDA events and synchronization to save CPU

cycles. We employ shared memory and ZeroMQ [5] for efficient

inter-process and inter-node communication, respectively.

Settings. We compare the performance of StellaTrain with four

baselines: PyTorch DDP [26] (gloo backend), BytePS [23], BytePS-

Compress [55] and Espresso [46]. BytePS-Compress uses GPU-

based gradient compression, which is built upon a network pipelin-

ing solution, BytePS. Espresso, the closest related work, adds adap-

tive gradient compression atop BytePS. We further implement het-

erogeneous GPU support for PyTorch DDP and BytePS-Compress.

For the baselines, we use a batch size that fully fills the GPU mem-

ory.

We perform evaluations using three nodes in the on-premises

cluster with 2 GPUs each and one node in the remote cluster with 4

GPUs (4 nodes and 10 GPUs total). Three nodes in the on-premises

cluster have two NVIDIA RTX 4090, two RTX 4090, and two RTX

3090, respectively. The node in the remote cluster has four NVIDIA

V100 GPUs. We emulate the bandwidth between the on-premises

(Node 1, 2, 3) and remote (Node 4) clusters using the network

bandwidth trace we measured between two CloudLab clusters [13]

(Utah and Wisconsin), in order to maintain consistency across ex-

periments. The average WAN bandwidth between the on-premises

and the remote cluster is 115.7Mbps.

We also show evaluationswith the specific link speeds of 100Mbps,

500Mbps, and 1Gbps, which were selected after the WAN band-

width observation above. In these evaluations, we use the same

node setup except for Node 4, in which we replace the remote GPU

node with an on-premises node with two RTX 2080 Ti. We use

the suggested compression rate of 90%, 95%, and 99% for BytePS-

Compress and Espresso for the bandwidths of 1Gbps, 500Mbps,

and 100Mbps, respectively.

We evaluate three different models: ResNet152 [17] (58M param-

eters), ViT-Base-16 [12] (88M parameters), and Swin-B [27] (139M

parameters). We train the model with the ImageNet-100 dataset (a

subset of ImageNet [10] with 100 classes) up to 100 epochs and lever-

age SGD [36] optimizer to update parameters. We also fine-tune a

pre-trained LLM, GPT-2 (123.6M parameters).

5.1 End-to-end benefits
Figure 8(a) shows the end-to-end training time to reach the same

training loss (or time-to-accuracy) in the multi-cloud scenario, nor-

malized to that of PyTorch DDP. Compared to methods that do not

involve compression, StellaTrain achieves higher TTA reduction by

up to 104×. PyTorch DDP suffers from both high gradient exchange

time under limited network bandwidth and under-utilization of

GPUs due to stragglers, as RTX 3090 is up to 2.02× slower than

RTX 4090 (Table 2). The improved version of PyTorch DDP that

supports heterogeneous GPUs (denoted as PyTorch DDP + Hetero)

trains the model up to 2.06× faster but is still up to 63.7× slower

than StellaTrain.

Compared to systems that employ gradient compression (BytePS-

Compress and Espresso), StellaTrain reduces TTA by up to 57.8×.
Powered by GPU-based compression, BytePS-Compress achieves

significant gain over non-compressed baselines as it eliminates

the bottleneck in gradient transmission. However, all baselines

are still slower than StellaTrain, even with heterogeneous GPU

support. StellaTrain achieves 1.84×-2.55× better TTA compared to

BytePS-Compress + Hetero, which is the best-performing baseline

except for StellaTrain, as shown in Figure 8(b) in linear scale. This is

because its gradient compression runs on GPU, consuming valuable

714

Accelerating Model Training in Multi-cluster Environments with Consumer-grade GPUs ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

0.001

0.01

0.1

1

ResNet152 ViT-Base-16 Swin-B

PyTorch DDP PyTorch DDP + Hetero
BytePS Espresso
Espresso + Hetero BytePS-Compress
BytePS-Compress + Hetero StellaTrain

Re
la

tiv
e

TT
A

(a) WAN bandwidth = 100Mbps

0.01

0.1

1

ResNet152 ViT-Base-16 Swin-B

PyTorch DDP PyTorch DDP + Hetero
BytePS Espresso
Espresso + Hetero BytePS-Compress
BytePS-Compress + Hetero StellaTrain

Re
la

tiv
e

TT
A

(b) WAN bandwidth = 500Mbps

0.01

0.1

1

ResNet152 ViT-Base-16 Swin-B

PyTorch DDP PyTorch DDP + Hetero
BytePS Espresso
Espresso + Hetero BytePS-Compress
BytePS-Compress + Hetero StellaTrain

Re
la

tiv
e

TT
A

(c) WAN bandwidth = 1Gbps

Figure 9: Speedup of End-to-End TTA with different WAN bandwidths (relative to PyTorch DDP TTA).

0

0.5

1
0

0.5

1

1.5

On-premises Only Cloud Only Multi-Cluster

0

0.5

1

1.5
0

0.5

1

ResNet152 ViT-B-16 Swin-B ResNet152 ViT-B-16 Swin-B

Relative TTA

FP32

Relative Cost

ResNet152 ViT-B-16 Swin-BResNet152 ViT-B-16 Swin-B

FP16

Figure 10: Cost savings of StellaTrain.

GPU resources for compression, and its use of synchronous update

causes the GPU to wait for the gradient exchange. In addition, their

inability to adjust to variable WAN bandwidth results in slower

gradient exchanges and reduced iteration speed when the WAN

bandwidth experiences degradation.

Figure 8(c) shows the iteration speed of training the ViT-Base-16

model trained with StellaTrain and other baselines over time, un-

der varying WAN bandwidth. StellaTrain, unlike baselines lacking

bandwidth adaptation, dynamically adapts its compression rate and

batch size to the available bandwidth, thereby maintaining stable

and high iteration speeds close to the optimal.

Cloud cost reduction. Figure 10 demonstrates that StellaTrain

reduces cloud costs by 64.5% and 45.1% for FP32 and FP16 training,

respectively, through efficient co-training between cloud and on-

premises clusters. This is achieved through efficient co-training

across cloud and on-premises clusters, allowing users to augment

their GPU resources in the cloud as needed but at a reduced cost.

We examine TTA and cloud expenses across three configurations: 1)

6 RTX GPUs (on-premises only), 2) 8 V100 GPUs (cloud-only), and

3) a combination of 6 RTX GPUs and 4 V100 GPUs using StellaTrain

for co-training.

Training only with on-premises resources eliminates cloud costs,

but limits training throughput, limiting scalability and TTA reduc-

tion potential. Conversely, cloud-based training with 8 V100 GPUs

increases throughput (in FP16 training
1
) but incur significant costs.

Co-training with StellaTrain, using both on-premises and cloud

resources, enhances throughput by 40.7% for FP32 while requiring

fewer cloud GPUs. This leads to a total cost reduction of 64.5% for

FP32 and 45.1% for FP16 training.

TTA with different WAN bandwidths. Figure 9 shows the TTA
of StellaTrain and other baselines on multiple different preset band-

widths. As in the case with variable bandwidth, StellaTrain achieves

higher TTA reduction by 127.8-257.3×, 26.8-78.1×, and 14.3-35.8×
in 100Mbps, 500Mbps, and 1Gbps scenarios, respectively, over

non-compressed baselines. Compared to systems with gradient

compression and heterogeneous GPU support (BytePS-Compress

and Espresso + Hetero), StellaTrain still reduces TTA by 3.07-56.4×,
1.23-26.3×, and 1.31-6.15× in 100Mbps, 500Mbps, and 1Gbps sce-

narios, respectively.

However, even in the static bandwidth environment, BytesPS-

Compress with heterogeneous GPU support, the fastest baseline

except for StellaTrain, is still up to 6.12× slower than StellaTrain.

In particular, in the 100Mbps environment, it wastes valuable GPU

resources for compression and needs to wait for the gradient ex-

change, causing GPU stalls. Espresso performs better than non-

compressed baselines but still struggles in low-bandwidth scenarios.

As Espresso’s logic deciding how, where, or whether to compress

is highly optimized for higher bandwidth environment (≥25Gbps),
Espresso scheduler makes inefficient decisions—it exchanges most

of the layers uncompressed or only applies gradient quantization

to FP16. (e.g., only compresses 7 out of 330 layers for Swin-B). This

ends up transferring more data than fixed compression.

Iteration and convergence speed. To identify the factors con-

tributing to performance gains, we compare the iteration speed

as well as the convergence speed of each framework in Figure 11.

StellaTrain achieves the best iteration speed (Figure 11(a)) among

all systems due to its optimized pipeline. The iteration speed of

StellaTrain outruns that of GPU-based compression scheme by

up to 785%, 72.8%, and 68.1% in 100Mbps, 500Mbps, and 1Gbps,

respectively.

Unlike common belief, Figure 11(b) show that the convergence

speed is not heavily penalized even with high compression rate

1
Note that FP32 training in V100 is even slower than in RTX 2080 Ti. Datacenter-

grade GPUs (V100, A100) are optimized for FP16 training and are only faster than

consumer-grade GPUs in such cases.

715

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lim et al.

ResNet152 ViT-Base-16 Swin-B

PyTorch DDP + Hetero BytePS-Compress + Hetero Espresso + Hetero StellaTrain

0

400

800

1200

1600

2000

ResNet152 ViT-Base-16 Swin-B

Ite
ra

tio
n

Sp
ee

d
(Im

ag
e/

s)

100Mbps 1 Gbps
ResNet152 ViT-Base-16 Swin-B

500Mbps

(a) Iteration Speed

ResNet152 ViT-Base-16 Swin-B

Non-Compression Compression StellaTrain

0
0.2
0.4
0.6
0.8

1

ResNet152 ViT-Base-16 Swin-BCo
nv

er
ge

nc
e

Sp
ee

d

100Mbps 1 Gbps
ResNet152 ViT-Base-16 Swin-B

500Mbps

(b) Convergence Speed

Figure 11: Iteration Speed and Convergence Speed with different WAN bandwidths (relative to PyTorch DDP).

and staleness. While other compression-based schemes (BytePS-

Compress, Espresso) feature high convergence speed, we empir-

ically demonstrate that the overhead of waiting for the gradient

exchange is actually greater than the penalty in convergence speed

due to staleness.

Fine-tuning LLMs. We show that StellaTrain enables efficient

fine-tuning of LLM models in a multicluster environment. We com-

pare the TTA of fine-tuning pre-trained GPT-2 model (123.6M

parameters) when trained with PyTorch DDP and StellaTrain. We

fine-tune pre-trained GPT-2 model with WikiText-103 [28] dataset

for 1 epoch. When trained with 1Gbps network, we find StellaTrain

is 17.2× and 8.71× faster than training with PyTorch DDP and Py-

Torch DDP with heterogeneous GPU support. The performance

gain is comparable to our evaluation on image-based training.

Using StellaTrain, users can now efficiently train LLMs across

multiple nodes. Without StellaTrain, the best one can do within

our 8 GPU cluster is using only one node with 2 RTX4090. On a

single machine with two RTX 4090s, LLM fine-tuning results in

a throughput of 17.8 iterations/second. On our distributed cluster

with 8 GPUs (detailed in settings), we achieve a significant speed-up

with a throughput of 27.2 iterations/second with StellaTrain (a 53%

speedup compared to the single-node setup). On the same cluster,

PyTorch-DDP can achieve only 1.58 iterations/second, i.e., 11.24×
slowdown compared to a single-node setup.

For fine-tuning LLMs over large-scale distributed datasets, Stel-

laTrain can reduce the WAN bandwidth usage by avoiding the need

for moving the entire dataset. Instead, it exchanges gradients over

the limited-bandwidth WAN.

5.2 Component-wise benefits
Dynamic batch size adaptation. Figure 14(a) shows how Stel-

laTrain selects the optimal compression ratio and total batch size

under varying bandwidth for the ViT-Base-16 model, evaluated on

two nodes with two RTX 4090 and two RTX 2080 Ti each. Stella-

Train selects different batch size and compression rate depending

on the observed bandwidth; when the available bandwidth is 1 Gbps,

StellaTrain selects a batch size of 137 with a 97% compression rate,

and when the available bandwidth is 100Mbps, StellaTrain choose

a batch size and compression rate of 240 and 99.5%, respectively.

With Swin-B, StellaTrain achieves 43.3% and 8.1% faster TTA

than baselines with no adaptation and compression-ratio only adap-

tation, respectively, as shown in Figure 14(b). The baseline without

any adaptation suffers from both slower iteration speed and con-

vergence speed coming from congestion and sub-optimal batch

size selection. Adapting compression rate also makes a sub-optimal

choice of batch size, risking a very high compression ratio when

bandwidth is scarce, slowing down the convergence.

Figure 14(c) shows how StellaTrain adapts the batch size of each

GPU in response to fluctuations in bandwidth in an evaluation with

4 GPUs (two RTX 4090 and two RTX 2080 Ti). The dashed line

represents a trace of the fluctuating WAN bandwidth measured

between CloudLab clusters, while the solid line indicates the batch

size selected by StellaTrain for different types of GPUs. StellaTrain

dynamically adjusts the batch size across the GPUs to minimize the

TTA, selecting larger batch sizes for faster GPUs and smaller batch

sizes for slower GPUs to prevent stragglers.

Cache-aware compression and Sparse optimizer. Cache-aware
compression and the sparse optimizer are essential for maximiz-

ing GPU utilization during compressed gradient exchange. Using

PyTorch Top-k compression instead of cache-aware compression

decreases iteration speed by 11.3% due to the higher computational

demands. Replacing the sparse optimizer with the default SGD op-

timizer in PyTorch further slows down iteration speed by 17.3%. As

both processes are computationally heavy, when both cache-aware

compression and the sparse optimizer are disabled, the iteration

speed diminishes significantly, showing a 44.3% reduction.

5.3 Deep dive
Sparse optimizer. Figure 12 shows the time taken by optimizers to

update themodel parameters.We compare the dense optimizer from

PyTorch with the CPU-based sparse optimizer in StellaTrain (§3.1).

While the dense optimizer is fast on GPUs, it becomes significantly

slower on a CPU, requiring up to 172ms, which makes the CPU-

based optimization infeasible. In contrast, our sparse optimizer, with

cache awareness turned off, can achieve an optimization time of

10.2 ms (at 99% gradient compression), which is 16.8× the reduction.
The cache-aware compression further reduces this time, achieving

1.34 ms at 99% gradient compression, which amounts to 128x speed

up. Note that for the dense optimizer, the time remains constant

regardless of the compression ratio, as the total computation is

fixed to the parameter size.

Cache-aware compression. The cache-aware threshold-𝑣 com-

pression method accelerates compression itself as shown in Fig-

ure 13 (a). It achieves up to 3.35× faster compression than its non-

cache-aware counterpart, requiring only 33.5ms to compress the

gradient for the entire model. Remarkably, cache-aware threshold-𝑣

is 16% faster than vanilla threshold-𝑣 , even on GPUs. In Figure 13

716

Accelerating Model Training in Multi-cluster Environments with Consumer-grade GPUs ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

0

100

200

300

400

500

50% 75% 90% 95% 99%

Dense (CPU) Dense (GPU)

StellaTrain w/o C.aware StellaTrain

ms

Gradient Compression Ratio

Figure 12: Optimization time of Stella-
Train vs. dense optimizers.

0

100

200

300

400

500

50% 75% 90% 95% 99%

Vanilla (PyTorch CPU) Vanilla (PyTorch GPU)
Vanilla (SIMD) StellaTrain

Gradient Compression Ratio

ms

(a) Compression Time

1

2

3

4

5

0 2000 4000 6000

Top-K Random-K
Threshold-v C.-aware Thresh-v

Tr
ai

n
in

g
Lo

ss

Training Iteration

(b) Loss curve with multiple compressors

Figure 13: Performance of the cache-aware threshold-𝑣 compression.

95%

96%

97%

98%

99%

100%

64

128

192

256

320

384

50 100 250 500 1000
Bandwidth (Mbps)

Total Batch Size

Compression Rate

(a) Optimal comp. rate and batch size

0 0.25 0.5 0.75 1

No Adapt
Comp. Ratio Adapt
Comp. Ratio + Batch size Adapt

R
el

at
iv

e
TT

A

(b) Relative TTA

0

50

100

150

200

250

0

50

100

150

200

250

0 10 20 30 40 50 60 70

RTX 4090 RTX 2080 Ti WAN Bandwidth
B

an
d

w
id

th
 (M

b
p

s)

Time (sec)

B
at

ch
 S

iz
e

(c) Batch size adaption under bandwidth fluctuation between CloudLab clusters

Figure 14: Compression rate and batch size adaptation.

(b), we compare model convergence speed and observe that cache-

aware threshold-𝑣 is comparable to vanilla threshold-𝑣 and outper-

forms random-𝑘 , a commonly used scheme for lightweight com-

pression.

Priority-based scheduling. We evaluate the impact of gradient

prioritization by comparing the baseline First-Come-First-Serve

(FCFS) scheduling of gradient updates with priority-based schedul-

ing in StellaTrain using the ResNet152 model. We observe that the

baseline FCFS is 9.6% slower compared to priority-based scheduling

in StellaTrain. Since model updates from initial layers are priori-

tized in StellaTrain, the forward pass of the subsequent iteration

can begin sooner in StellaTrain. As model size increases, the bene-

fits of prioritization will become more prominent since the initial

layers have to wait longer in FCFS.

Staleness. Applying bounded staleness is important in acceler-

ating the convergence speed. Eliminating staleness requires the

subsequent iteration to wait for gradient exchange, which stalls the

training pipeline. Our evaluation with Swin-B shows that eliminat-

ing staleness slows down the iteration speed by 22%.While bounded

staleness affects the convergence speed, it doesn’t influence the

eventual convergence of the model. Our results indicate that the

introduction of staleness can slow down the convergence speed by

at most 18%. However, this slowdown is still less significant than

the slowdown observed when staleness is completely eliminated

(22% - 33.4%). Thus, introducing bounded staleness is beneficial in

reducing the TTA.

In our adaptive staleness approach, about 15% of the layers are

updated without staleness, providing a balance between maintain-

ing fast iteration speed and effective convergence.

6 Related work and Discussion
Federated learning. StellaTrain is designed for environments

where each GPU computes gradients very fast. This is in contrast

to Federated Learning (FL), where asynchronous parameter update

is applied to accommodate highly variable and inherently slow

computation speeds. Applying existing FL solutions in such a setup

would rather increase model staleness excessively, severely slow-

ing down the convergence speed. The main focus of FL is rather

on handling non-IID data across different clients, which is not a

concern for StellaTrain as it operates with IID training data.

Benefits of co-optimization. Figure 15 shows the trade-off space

of acceleration strategies in terms of the two determinants of TTA.

The vanilla distributed training scheme, PyTorch DDP [26], has a

high convergence speed but low iteration speed due to high network

load. Compression strategies [3, 4, 14, 19, 43] reduce the network

load considerably and, thereby, improve iteration speed. However,

compression could affect the convergence speed significantly if it

is not carefully tuned, particularly at low bandwidths. Network

adaptive compression schemes, such as DC2 [1] and Kimad [47],

can mitigate this effect. By combining pipelining with compression,

Espresso [46] can further improve both convergence and iteration

speeds, but it requires careful tuning. StellaTrain significantly im-

proves the iteration time while also maintaining high convergence

speed, as demonstrated in our evaluations. The co-optimization

of multiple acceleration strategies enables us to unlock the high-

performance region in the design trade-off space.

The performance of various schemes in Figure 15 can be visual-

ized as the flexibility that each scheme offers to explore the optimal

plane in Figure 6. Espresso searches for the optimal point on the two-

dimensional plane of compression ratio and network bandwidth

in Figure 6. StellaTrain, on the other hand, enables us to search

the three-dimensional space alongside leveraging fixed staleness,

priority-based task scheduling, and CPU-based optimizations.

Supporting larger models. The design of StellaTrain focuses on

supporting data parallelism in a multi-cluster environment, sepa-

rated by a WAN. Although our current implementation and evalua-

tion are limited to training models that fit within the GPU mem-

ory, we believe it can be easily extended to support the training

717

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lim et al.

Iteration Speed (GPU Utilization)

C
o

n
ve

rg
en

ce
 S

p
ee

d

Distributed
 Training Libraries
PyTorch DDP, BytePS

Better

Gradient
Compression

Primitives
Quantization,
Sparsification

StellaTrain

Network-adaptive
Compression

DC2

Pipelining +
Compression

Pipelining

Efficient Pipelining
Explore more space
Faster CPU-based

Optimization /
Compression

Compression

Espresso
GAIA

Figure 15: Multi-cluster acceleration strategies in the trade-
off space of the two determinants of TTA.

of LLMs with hundreds of billions of parameters (e.g. GPT-3 [7],

OPT-175B [51]) with negligible additional overhead.

There are two main ways to enable this. The most straightfor-

ward approach is to apply existing offloading techniques to train

larger models within a single GPU. StellaTrain then treats each

individual GPU machine as a cluster of its own without any modifi-

cation. With parameter offloading [35] and activation checkpoint-

ing, StellaTrain can save GPU memory by maintaining only the

active layer’s parameters on the GPU and offloading the rest to the

CPUmemory. Implementing such techniques only requires an extra

parameter upload step before the backward pass and is unlikely

to significantly impact the iteration speed, given that the current

PCIe upload bandwidth utilization is less than 20%. The second ap-

proach is to take a hierarchical design. This takes advantage of the

high-speed connectivity within a cluster to train larger models with

model parallelism and apply data parallelism across clusters. Fur-

ther research is required into streamlined multi-tiered pipelining to

enable hierarchial gradient exchange across model/data parallelism

boundaries.

Lack of formal proof of convergence. In StellaTrain, we com-

bine multiple acceleration strategies and empirically demonstrate

that co-optimization does not compromise convergence. Through

multiple experiments, we show that the convergence speed is within

82% of the baseline. We sacrifice slightly on convergence speed to

significantly improve the iteration speed and, thereby, TTA. We

leave the formal proof of convergence as future work.

Note that the proof of convergence for most acceleration strate-

gies used in ML was developed after the techniques gained pop-

ularity and widespread practical adoption. For example, gradient

sparsification/compression was shown to be practically feasible

and highly performant as early as 2015 [3, 44], leading to extensive

real-world usage, before a theoretical justification for convergence

was established in 2018 [4]. Similarly, the theoretical grounds for

staleness were established between 2011 and 2015 [18, 25, 34, 50]

and are still a topic of recent studies [8], while the technique has

been widely used in practice for scalable training for more than

a decade since 2009 [9, 24, 56]. Our contribution is to empirically

demonstrate the benefit of combining the two, calling for contribu-

tions in the theoretical realm.

Optimizing collectives in multi-strategy space. Aggregation
of compressed gradients is a challenge [40] because, at each worker,

the set of gradients with the largest magnitude may be different.

Currently, StellaTrain employs a simple approximation by choosing

the top 𝑘/𝑁 gradients at each of the 𝑁 workers so that at most 𝑘

gradients are updated across all workers. OmniReduce [15] pro-

posed transmission of only non-zero blocks in this setting. We can

expand the design space by allowing the careful elimination of non-

zero blocks. We leave the design of a compression-aware gradient

aggregation scheme with greater flexibility as future work.

Handling errors in bandwidth estimation. StellaTrain deter-

mines the compression ratio and batch size per device based on

the estimated network bandwidth. Errors in bandwidth estimation

could potentially affect pipelining. If the real bandwidth is higher

than the estimates, we underutilize the resources. On the other

hand, if the real bandwidth is lower, it can have significant adverse

effects on pipelining and, in turn, the convergence speed. Thus,

overestimation of bandwidth is more harmful than underestima-

tion for pipelining. Hence, we adopt a conservative approach to

bandwidth estimation and adaptation in StellaTrain.

ManagingWANchallenges. While this work focuses on adapting

to bandwidth fluctuations for WAN training, we acknowledge that

WAN environments can experience other transient conditions such

as packet drops and timeouts, introducing additional challenges.

StellaTrain relies on the underlying TCP and ZeroMQ transports

to recover from packet loss and adjust transmission rates accord-

ingly, ensuring that training accuracy is not impacted. However,

extremely poor WAN conditions may warrant dynamic node man-

agement that allows new nodes to join or leave the training cluster

based on their network status, which could further improve training

efficiency and robustness. Finally, StellaTrain does not deal with

fault tolerance and recovery from failures.

7 Conclusion
StellaTrain is the first framework that takes a holistic approach

to accelerate model training in consumer-grade GPU clusters by

co-optimizing several acceleration techniques. We investigate the

design space of acceleration techniques and identify the key trade-

off knobs for reducing the time-to-accuracy. In addition to leverag-

ing well-known solutions, StellaTrain introduces novel strategies

for training acceleration, including a cache-aware gradient com-

pression scheme and a CPU-based sparse optimizer. Our evaluation

demonstrates that StellaTrain can accelerate distributed training

in multi-cluster settings with limited bandwidth by up to 104×,
while also adapting seamlessly to bandwidth fluctuations. Stella-

Train achieves up to 257.3× and 78.1× speedups on the network

bandwidths of 100Mbps and 500Mbps. StellaTrain also provides

significant speedup in fine-tuning LLMs. This work does not raise

any ethical issues.

Acknowledgments
We thank our shepherd Dejan Kostic and the anonymous reviewers

for providing helpful feedback and suggestions to improve our work.

This work was supported by the National Research Foundation of

Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-

2024-00340099) and Institute of Information & Communications

Technology Planning & Evaluation (IITP) grant funded by the Korea

government (MSIT) (No. RS-2024-00418784).

718

Accelerating Model Training in Multi-cluster Environments with Consumer-grade GPUs ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

References
[1] AhmedMAbdelmoniem andMarco Canini. 2021. DC2: Delay-aware compression

control for distributed machine learning. In IEEE INFOCOM 2021-IEEE Conference
on Computer Communications (Vancouver, BC, Canada). IEEE.

[2] Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, and Dimitris Papail-

iopoulos. 2022. On the utility of gradient compression in distributed training

systems. Proceedings of Machine Learning and Systems 4 (2022).
[3] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse communication for dis-

tributed gradient descent. arXiv preprint arXiv:1704.05021 (2017).
[4] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit

Khirirat, and Cédric Renggli. 2018. The convergence of sparsified gradient

methods. Advances in Neural Information Processing Systems 31 (2018).
[5] The ZeroMQ authors. 2023. ZeroMQ. https://zeromq.org/.

[6] BIZON. 2023. GPU Deep Learning Benchmarks 2023–2024. https://bizon-

tech.com/gpu-benchmarks/NVIDIA-RTX-3090-vs-NVIDIA-A100-40-GB-

(PCIe)/579vs592. [Accessed 01-02-2024].

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020).

[8] Yangrui Chen, Cong Xie, Meng Ma, Juncheng Gu, Yanghua Peng, Haibin Lin,

Chuan Wu, and Yibo Zhu. 2022. SAPipe: Staleness-Aware Pipeline for Data

Parallel DNN Training. In Advances in Neural Information Processing Systems.
[9] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark

Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. 2012.

Large scale distributed deep networks. Advances in neural information processing
systems 25 (2012).

[10] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee.

[11] Tim Dettmers. 2023. The Best GPUs for Deep Learning in 2023 — An In-depth

Analysis. https://timdettmers.com/2023/01/30/which-gpu-for-deep-learning/.

[Accessed 27-Jun-2023].

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers

for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).
[13] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon

Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya

Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael

Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The De-

sign and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). https://www.flux.utah.edu/paper/duplyakin-atc19

[14] Aritra Dutta, El Houcine Bergou, Ahmed M Abdelmoniem, Chen-Yu Ho,

Atal Narayan Sahu, Marco Canini, and Panos Kalnis. 2020. On the discrepancy

between the theoretical analysis and practical implementations of compressed

communication for distributed deep learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, Vol. 34.

[15] Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini, and Amedeo Sapio. 2021. Effi-

cient sparse collective communication and its application to accelerate distributed

deep learning. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference.
[16] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy Campbell. 2019. Tictac: Ac-

celerating distributed deep learning with communication scheduling. Proceedings
of Machine Learning and Systems 1 (2019).

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition.

[18] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B

Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. 2013. More effective

distributed ML via a stale synchronous parallel parameter server. Advances in
neural information processing systems 26 (2013).

[19] Samuel Horvóth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco

Canini, and Peter Richtárik. 2022. Natural compression for distributed deep

learning. In Mathematical and Scientific Machine Learning. PMLR.

[20] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R

Ganger, Phillip B Gibbons, and Onur Mutlu. 2017. Gaia: Geo-distributed machine

learning approaching LAN speeds.. In NSDI.
[21] Intel. 2023. 13th Generation Intel® Core™ Processors Datasheet.

[22] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova, and Gennady

Pekhimenko. 2019. Priority-based parameter propagation for distributed DNN

training. Proceedings of Machine Learning and Systems 1 (2019).
[23] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.

2020. A unified architecture for accelerating distributed DNN training in het-

erogeneous GPU/CPU clusters. In Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation.

[24] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja

Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling dis-

tributed machine learning with the parameter server. In 11th USENIX Symposium
on operating systems design and implementation (OSDI 14).

[25] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. 2014. Communication

efficient distributed machine learning with the parameter server. Advances in
Neural Information Processing Systems 27 (2014).

[26] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,

Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. Pytorch

distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704 (2020).

[27] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,

and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer us-

ing shifted windows. In Proceedings of the IEEE/CVF international conference on
computer vision.

[28] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2017.

Pointer Sentinel Mixture Models. In International Conference on Learning Repre-
sentations. https://openreview.net/forum?id=Byj72udxe

[29] NVIDIA. 2022. NVIDIA DGX A100 : The Universal System for AI Infrastructure

— nvidia.com. https://www.nvidia.com/en-us/data-center/dgx-a100/. [Accessed

22-09-2023].

[30] NVIDIA. 2023. NVIDIA H100 Tensor Core GPU. https://nvidia.com/en-us/data-

center/h100. [Accessed 27-Jun-2023].

[31] NVIDIA. 2023. NVLink & NVSwitch for Advanced Multi-GPU Communication.

https://nvidia.com/en-us/data-center/nvlink. [Accessed 27-Jun-2023].

[32] NVIDIA. 2024. GPUDirect. https://developer.nvidia.com/gpudirect.

[33] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan

Wu, and Chuanxiong Guo. 2019. A generic communication scheduler for dis-

tributed dnn training acceleration. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles.

[34] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild!:

A lock-free approach to parallelizing stochastic gradient descent. Advances in
neural information processing systems 24 (2011).

[35] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,

Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. {ZeRO-Offload}:
Democratizing {Billion-Scale} model training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21).

[36] Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method.

The annals of mathematical statistics (1951).
[37] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad Sharif, Rong Pan, Mostafa

Ammar, Ellen Zegura, Keon Jang, Mohammad Alizadeh, Abdul Kabbani, et al.

2020. Annulus: A dual congestion control loop for datacenter and wan traffic

aggregates. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures, and
protocols for computer communication.

[38] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-bit stochastic

gradient descent and its application to data-parallel distributed training of speech

dnns. In Fifteenth annual conference of the international speech communication
association.

[39] Amazon Web Services. 2023. Compute – Amazon EC2 Instance Types – AWS —

aws.amazon.com. https://aws.amazon.com/en/ec2/instance-types/. [Accessed

21-09-2023].

[40] Shaohuai Shi, Qiang Wang, Kaiyong Zhao, Zhenheng Tang, Yuxin Wang, Xiang

Huang, and Xiaowen Chu. 2019. A distributed synchronous SGD algorithm

with global top-k sparsification for low bandwidth networks. In 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS). IEEE.

[41] Shaohuai Shi, Xianhao Zhou, Shutao Song, XingyaoWang, Zilin Zhu, Xue Huang,

Xinan Jiang, Feihu Zhou, Zhenyu Guo, Liqiang Xie, et al. 2021. Towards scalable

distributed training of deep learning on public cloud clusters. Proceedings of
Machine Learning and Systems 3 (2021).

[42] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. 2017. Don’t

decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489
(2017).

[43] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. 2018. Sparsified

SGD with memory. Advances in Neural Information Processing Systems 31 (2018).
[44] Nikko Ström. 2015. Scalable Distributed DNN Training Using Commodity

GPU Cloud Computing. In Interspeech 2015. https://www.amazon.science/

publications/scalable-distributed-dnn-training-using-commodity-gpu-cloud-

computing

[45] Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Connor Holmes, Samyam Rajb-

handari, Olatunji Ruwase, Feng Yan, Lei Yang, and Yuxiong He. 2023. ZeRO++:

Extremely Efficient Collective Communication for Giant Model Training. arXiv
preprint arXiv:2306.10209 (2023).

[46] Zhuang Wang, Haibin Lin, Yibo Zhu, and TS Eugene Ng. 2023. Hi-Speed DNN

Training with Espresso: Unleashing the Full Potential of Gradient Compression

with Near-Optimal Usage Strategies. In Proceedings of the Eighteenth European
Conference on Computer Systems.

719

https://zeromq.org/
https://bizon-tech.com/gpu-benchmarks/NVIDIA-RTX-3090-vs-NVIDIA-A100-40-GB-(PCIe)/579vs592
https://bizon-tech.com/gpu-benchmarks/NVIDIA-RTX-3090-vs-NVIDIA-A100-40-GB-(PCIe)/579vs592
https://bizon-tech.com/gpu-benchmarks/NVIDIA-RTX-3090-vs-NVIDIA-A100-40-GB-(PCIe)/579vs592
https://timdettmers.com/2023/01/30/which-gpu-for-deep-learning/
https://www.flux.utah.edu/paper/duplyakin-atc19
https://openreview.net/forum?id=Byj72udxe
https://www.nvidia.com/en-us/data-center/dgx-a100/
https://nvidia.com/en-us/data-center/h100
https://nvidia.com/en-us/data-center/h100
https://nvidia.com/en-us/data-center/nvlink
https://developer.nvidia.com/gpudirect
https://aws.amazon.com/en/ec2/instance-types/
https://www.amazon.science/publications/scalable-distributed-dnn-training-using-commodity-gpu-cloud-computing
https://www.amazon.science/publications/scalable-distributed-dnn-training-using-commodity-gpu-cloud-computing
https://www.amazon.science/publications/scalable-distributed-dnn-training-using-commodity-gpu-cloud-computing

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lim et al.

[47] Jihao Xin, Ivan Ilin, Shunkang Zhang, Marco Canini, and Peter Richtárik. 2023. Ki-

mad: Adaptive Gradient Compression with Bandwidth Awareness. In Proceedings
of the 4th International Workshop on Distributed Machine Learning.

[48] Hang Xu, Chen-Yu Ho, AhmedMAbdelmoniem, Aritra Dutta, El Houcine Bergou,

Konstantinos Karatsenidis, Marco Canini, and Panos Kalnis. 2020. Compressed
communication for distributed deep learning: Survey and quantitative evaluation.
Technical Report. KAUST.

[49] Hao Zhang, Zhiting Hu, Jinliang Wei, Pengtao Xie, Gunhee Kim, Qirong Ho, and

Eric Xing. 2015. Poseidon: A system architecture for efficient gpu-based deep

learning on multiple machines. arXiv preprint arXiv:1512.06216 (2015).
[50] Ruiliang Zhang and James Kwok. 2014. Asynchronous distributed ADMM for

consensus optimization. In International conference on machine learning. PMLR.

[51] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui

Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. OPT:

Open Pre-trained Transformer Language Models. arXiv preprint arXiv:2205.01068
(2022).

[52] Shanshan Zhang, Ce Zhang, Zhao You, Rong Zheng, and Bo Xu. 2013. Asynchro-

nous stochastic gradient descent for DNN training. In 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEE.

[53] Zhenwei Zhang, Qiang Qi, Ruitao Shang, Li Chen, and Fei Xu. 2021. Prophet:

Speeding up Distributed DNN Training with Predictable Communication Sched-

uling. In 50th International Conference on Parallel Processing.
[54] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma,

and Tie-Yan Liu. 2017. Asynchronous stochastic gradient descent with delay

compensation. In International Conference on Machine Learning. PMLR.

[55] Yuchen Zhong, Cong Xie, Shuai Zheng, and Haibin Lin. 2021. Compressed

communication for distributed training: Adaptive methods and system. arXiv
preprint arXiv:2105.07829 (2021).

[56] Martin Zinkevich, John Langford, and Alex Smola. 2009. Slow learners are fast.

Advances in neural information processing systems 22 (2009).

720

	Abstract
	1 Introduction
	2 Motivation
	2.1 DL training in lab-scale clusters
	2.2 Need for Direction Optimization of TTA

	3 Optimizing Training Pipeline
	3.1 CPU-based Sparse Optimizer
	3.2 CPU-based Gradient Sparsification
	3.3 Efficient Pipeline Management

	4 Holistic minimization of TTA
	4.1 Optimization Cycle
	4.2 Optimization Objective
	4.3 Modeling Convergence Speed

	5 Evaluation
	5.1 End-to-end benefits
	5.2 Component-wise benefits
	5.3 Deep dive

	6 Related work and Discussion
	7 Conclusion
	Acknowledgments
	References

