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Abstract—Hardware technologies for trusted computing, or
trusted execution environments (TEEs), have rapidly matured
over the last decade. In fact, TEEs are at the brink of widespread
commoditization with the recent introduction of Intel Software
Guard Extensions (Intel SGX). Despite such rapid development
of TEE, software technologies for TEE significantly lag behind
their hardware counterpart, and currently only a select group
of researchers have the privilege of accessing this technology. To
address this problem, we develop an open source platform, called
OpenSGX, that emulates Intel SGX hardware components at the
instruction level and provides new system software components
necessarily required for full TEE exploration. We expect that the
OpenSGX framework can serve as an open platform for SGX
research, with the following contributions. First, we develop a
fully functional, instruction-compatible emulator of Intel SGX
for enabling the exploration of software/hardware design space,
and development of enclave programs. OpenSGX provides a
platform for SGX development, meaning that it provides not
just emulation but also operating system components, an enclave
program loader/packager, an OpenSGX user library, debugging,
and performance monitoring. Second, to show OpenSGX’s use
cases, we applied OpenSGX to protect sensitive information (e.g.,
directory) of Tor nodes and evaluated their potential performance
impacts. Therefore, we believe OpenSGX has great potential
for broader communities to spark new research on soon-to-be-
commodity Intel SGX.

I. INTRODUCTION

Hardware technologies for trusted computing, so called
trusted execution environments (TEEs), have rapidly matured
over the last decade [3, 18]. Trusted execution environments
are at the brink of widespread commoditization with the recent
introduction of Intel Software Guard Extensions (Intel SGX) [2,
19, 36]. Intel SGX allows an application, or its sub-component,
to run inside an isolated execution environment, called an
enclave. Intel SGX hardware protects the enclave against any
malicious software, including operating system, hypervisor, and
low-level firmware (e.g., SMM), which attempts to compromise
its integrity or steal its secrecy. With the widespread adoption
of cloud computing, the speculation is that Intel SGX can be
a vehicle for enabling secure cloud computing and allowing
many unforeseen security applications.

The adoption of Intel SGX can have a dramatic impact
on software design and implementation. For example, the
introduction of SGX may require new programming models or
even a new paradigm to be considered. However, despite the
rapid development of TEEs, software technologies for TEE are
still at a nascent stage. In fact, for Intel SGX, it is not feasible
to fully explore all the potential that the SGX can provide
because the research community lacks any usable platform for
experimentation. In particular, access to the Intel SGX platform
is currently limited to only a select group of people [5, 42, 43].
This is one of the fundamental barriers to innovation and
software research on SGX, especially at its early phase.

In this paper, we attempt to address this fundamental issue
of designing and implementing a basic infrastructure that allows
full instrumentation and exploration of SGX research. To this
end, we proposed and developed an open platform, called
OpenSGX, that emulates Intel SGX at the instruction-level by
extending an open-source emulator, QEMU. In particular, we
leverage QEMU’s userspace binary translation to implement
SGX instructions. However, OpenSGX is not just an SGX
instruction emulator, but it serves as a complete platform that
includes an emulated operating system layer and services, an
enclave program loader/package, a user library, debugging
support, and performance monitoring. Because OpenSGX is
implemented purely in software, it allows easy instrumentation
in virtually all aspects of SGX, such as hardware components
and system software, as well as memory encryption schemes.
In addition to its use for research, OpenSGX can be used for
developing SGX applications, as it is a self-contained platform,
which provides isolated execution and remote attestation.

However, it is not straightforward to design and implement
such an open platform for both research and development
communities. Not only does it require an intensive amount
of engineering effort, but it also needs to be designed to
inspire new research opportunities in operating systems and
applications. In particular, we find that while the Intel SGX
specification describes in detail the instruction set and internal
data structures, it leaves other important components largely
unspecified, such as support for system software and application
programming interface. This raises a number of non-trivial
issues. For example, many of the Intel SGX instructions are
ring 0 instructions that require kernel privilege. This implies
that an operating system, an untrusted entity with respect to
SGX, must be involved to provide service (e.g., through system
calls). Thus, a secure SGX design is required for SGX enclave
applications to defend against potential attack vectors, such as
Iago attacks [11].
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Furthermore, SGX requires that application code and data be
placed on Enclave Page Cache (EPC), a reserved, encrypted area
of memory, and that its execution must stay within EPC. For
executing a binary on EPC, an SGX instruction can allow one
to copy a normal page onto an EPC page; however, a dynamic
loader is additionally required to supply the provisioning of
the code, data, and stack sections on EPC (e.g., relocation).
To provide an ecosystem, OpenSGX must address these issues,
while the SGX specification largely concerns the instruction
set and low-level interfaces.

OpenSGX design fills this gap to provide necessary support
for SGX application programmers to readily implement their
TEE applications and explore the feasibility. In particular,
OpenSGX provides six components to support all aspects of
SGX development: hardware emulation module, operating sys-
tem emulation, enclave loader, user library, debugging support,
and performance monitoring. To evaluate all components of
the system and demonstrate the potential of OpenSGX, we
conducted a case study using Tor, the anonymity network, as
a concrete example. We discuss how SGX might be used to
enhance the security and privacy guarantees of Tor, redesign
Tor to leverage SGX, and use OpenSGX to implement its
SGX-based Tor design. Finally, we present the performance
profiling result of the SGX-enabled Tor. The profiling result
was produced using one of the services provided by OpenSGX.

In summary, we make the following contributions:
• The first open platform for SGX research and development,

which includes a wide range of emulation components and
toolchain.

• An initial exploration of system support, its interface design,
and the security issues involving system calls and user library
for SGX programming.

• We applied OpenSGX to Tor nodes to isolate sensitive
information (e.g., a signing key of the directory server) and
evaluate its potential performance implications.
We find that it is timely to introduce OpenSGX to the

community, considering the early-stage of Intel SGX—the first
SGX-equipped CPUs (S-Spec: SR2L0, SR2L1, ..., SR2L9,
SR2LC, ..., SR2LH, SR2LJ, ..., SR2LN) have been on the
market since October 26, 2015 [23], but there are no known
motherboards that support SGX other than a few DELL Inspiron
laptops (i3153, i3158, i7353, i7359, i7568) as of December
2015. We believe the open research opportunities that OpenSGX
brings will help not only the software community in exploring
new interfaces and semantics for SGX programming, but
also the hardware community in testing and implementing
new requirements and services for TEEs that the software
community may be able to identify and suggest as new hardware
features.

This paper is organized as follows. §II provides background
of Intel SGX. §III and §IV describe the system design. §V
explains the implementation details. §VI and §VII evaluate
OpenSGX through concrete case studies and describe our
initial experience of redesigning Tor to adopt Intel SGX. §VIII
presents related work, §IX discusses remaining issues, and
finally, §X concludes our work.

P Type Instruction Description V S

P MEM EADD Add a page r1 ✓
P MEM EBLOCK Block an EPC page r1 ✓
P EXE ECREATE Create an enclave r1 ✓
P DBG EDBGRD Read data by debugger r1 -
P DBG EDBGWR Write data by debugger r1 -
P MEM EEXTEND Extend EPC page measurement r1 ✓
P EXE EINIT Initialize an enclave r1 ✓
P MEM ELDB Load an EPC page as blocked r1 ✓
P MEM ELDU Load an EPC page as unblocked r1 ✓
P SEC EPA Add a version array r1 ✓
P MEM EREMOVE Remove a page from EPC r1 ✓
P MEM ETRACK Activate EBLOCK checks r1 -
P MEM EWB Write back/invalidate an EPC page r1 ✓
P MEM EAUG Allocate a page to an existing enclave r2 ✓
P SEC EMODPR Restrict page permissions r2 ✓
P EXE EMODT Change the type of an EPC page r2 ✓
U EXE EENTER Enter an enclave r1 ✓
U EXE EEXIT Exit an enclave r1 ✓
U SEC EGETKEY Create a cryptographic key r1 ✓
U SEC EREPORT Create a cryptographic report r1 ✓
U EXE ERESUME Re-enter an enclave r1 ✓
U MEM EACCEPT Accept changes to a page r2 ✓
U SEC EMODPE Enhance access rights r2 ✓
U MEM EACCEPTCOPY Copy a page to a new location r2 ✓

TABLE I: Intel SGX Instruction support in OpenSGX. P: Privileged
(ring 0) instructions; U: User-level (ring-3) instructions; V: Version;
S: Supported by OpenSGX; r1: Revision 1 [21]; r2: Revision 2 [22];
MEM: Memory management related; EXE: Enclave execution related;
SEC: Security or permissions related.

Instruction Description S

EPCM Enclave Page Cache Map Meta-data of an EPC page ✓
SECS Enclave Control Structure Meta-data of an enclave ✓
TCS Thread Control Structure Meta-data of a single thread ✓
SSA State Save Area Used to save processor state ✓
PageInfo Page Information Used for EPC-management ✓
SECINFO Security Information Meta-data of an enclave page ✓
PCMD Paging Crypto MetaData Used to track a page-out page ✓
SIGSTRUCT Enclave Signature Structure Enclave certificate ✓
EINITTOKEN EINIT Token Structure Used to validate the enclave ✓
REPORT Report Structure Return structure of EREPORT ✓
TARGETINFO Report Target Info Parameter for EREPORT ✓
KEYREQUEST Key Request Parameter for EGETKEY ✓
VA Version Array Version for evicted EPC pages ✓

TABLE II: Intel SGX Data Structure implemented in OpenSGX,
marked ✓in S if supported.

II. BACKGROUND

A. Intel SGX
Intel SGX is an extension to the x86 instruction set

architecture that enables an application to instantiate a protected
container, called an enclave, containing code and data. The
memory region residing in the enclave is protected against
all external software access including privileged ones such
as operating system and the hypervisor. To support enclave,
SGX consists of a set of new instructions and memory access
changes. Also, SGX supports remote attestation and sealing
that allow remotely verifying an enclave and securely saving
enclave data in non-volatile memory for future use, respectively.
SGX memory protection. When the processor accesses
enclave data, it automatically transfers to a new CPU mode,
called enclave mode. The enclave mode enforces additional
hardware checks on every single memory access, such that
only code inside the enclave can access its own enclave region.
That is, memory accesses from both non-enclaves and different
enclaves are prohibited. Note that memory access policy on
the non-enclave regions remains the same, i.e., traditional page
walk is performed for both accesses from non-enclaves and
enclaves to non-enclave memory.

The enclave data is stored in a reserved memory region
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called Enclave Page Cache (EPC). To defend against known
memory attacks such as memory snooping, memory content in
EPC is encrypted by the Memory Encryption Engine (MEE).
The memory content in EPC is only decrypted when entering
the CPU package, where the code and data are protected by
the enclave mode, and then re-encrypted when leaving to the
EPC memory region.
Instruction Set Architecture (ISA). SGX introduces a set
of instructions and data structures to support enclave and
EPC-related operations (see Table I and Table II). Instruc-
tions are classified into user-level instructions (ring 3) and
privileged instructions (ring 0). Note that the family of user-
lever/privileged instructions is called ENCLU/ENCLS. For example,
the user-level instruction EENTER allows the host program to
transfer the program’s control to an existing enclave program,
while ECREATE is a privileged instruction that allocates available
EPC pages for a new enclave.

B. OpenSGX Specification
One might imagine that faithfully implementing the Intel

SGX specification is sufficient for producing a usable em-
ulation and development environment. However, the speci-
fication leaves system software including operating system
support, debugging, and toolchains for software development,
largely under-specified. For example, many SGX instructions
(see Table I) require kernel privilege (ring 0), but system call
interface and operating system service/support for SGX have
not been explored. The system call interface is critical for SGX
applications because they must rely on necessary support from
an operating system that they do not trust. To fill this gap, we
explore system support for OpenSGX application developers
and define an interface with the operating system within the
SGX OS emulation layer, which provides service to OpenSGX
applications.
Disclaimers and threat model. OpenSGX does not support
binary-compatibility with Intel SGX because no specification
or standardization exists for the binary-level interoperability1.
Although OpenSGX supports most instructions specified, we
do not implement all instructions. Specifically, OpenSGX does
not implement debugging instructions, as our software layer
can provide a rich environment for debugging (e.g., familiar
GDB stub). OpenSGX is a software emulator and provides no
security guarantees. Its security guarantees are not at all the
same level as Intel SGX.

However, we consider the same threat model of Intel
SGX in designing the emulation platform. In particular, as
in Haven [5], we assume an adversary who has control
over all software components, including the operating system
and hypervisor, and hardware except the CPU package. In
the design and implementation of the system call interface,
OpenSGX considers mechanisms to thwart attacks that can be
mounted by system software, such as the Iago attacks [11].
For example, we integrate EAUG/EACCEPT instructions into the
dynamic memory allocation API to perform validation on newly
allocated memory, which a malicious OS cannot simply bypass.
However, protection against denial-of-service is out of scope;
an adversary can still launch a denial-of-service attack on
SGX [36]. Finally, OpenSGX cannot provide accurate (i.e.,
wall-clock) performance measures because it is a software

1Recent Windows 10 has been reported to have a preliminary support, SGX
R1, as described in a technical report [25]

QEMU SGX

Enclave Program

Code EPC

Data EPC

Stack EPC

...

Heap EPC

...
Lib EPC
...

EPCM

User process 
(single address space)

SGX OS EmulationENCLS
(e.g., EINIT)

ENCLU
(e.g., EEXIT)

ENCLU
(e.g., EENTER)

Trampoline

Stub

SGX Lib

Wrapper

sys_sgxinit()

Package Info
Entry point
Measurement
Key ...

Privilege 
boundary

System calls
boundary

Fig. 1: Overview of OpenSGX’s design and memory state of an
active enclave program: A packaged program, marked as Wrapper
and Enclave Program together, runs as a single process in the same
virtual address space. Since Intel SGX uses privilege instructions to
initialize and setup enclaves, OpenSGX introduces a set of system
calls to service the requests from the Wrapper program. The grayed
boxes represent isolated enclave pages, and stripped boxes depict the
shared memory region used to service the enclave program (note this
interface is not specified in Intel SGX [21, 22]).

emulator. Instead, OpenSGX helps developers and researchers
to speculate on potential performance issues by providing its
emulated performance statistics similar to that of the perf
counter.

III. SYSTEM OVERVIEW

OpenSGX emulates the hardware components of Intel SGX
and its ecosystem, which includes operating system interfaces
and user library, in order to run enclave programs. In this section,
we describe a high-level overview of OpenSGX’s design and
lifecycle of an enclave program starting from its development.

A. OpenSGX Components
To implement Intel SGX instructions and emulate its

hardware components, we leverage QEMU. In particular, we
implement OpenSGX’s OS emulation layer and hardware
emulation on top of QEMU’s user-mode emulation by extending
the binary translation. Figure 1 illustrates the overall design
components. OpenSGX consists of six components that work
together to provide a fully functional SGX development
environment. Each component is summarized below and the
detail is explained in §IV.
• Emulated Intel SGX hardware: We implement hardware

components, including SGX instructions, SGX data struc-
tures, EPC and its access protection, and the SGX processor
key as software within QEMU (§IV-A). Note that these
components are actually part of the processor or reside in the
EPC as part of protected data structures. OpenSGX provides
a tool for specifying hardware configurations, such as the
size of EPC and the SGX processor key.

• OS emulation: Some SGX instructions (ENCLS) are priv-
ileged instructions that should be executed by the kernel.
Thus, we define new system calls that the emulated enclave
programs use to perform SGX operations, such as enclave
provisioning and dynamic memory allocation (§IV-B). Note
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that this interface is crucial for development, but is not
defined in Intel SGX specifications. Our interface allows
user programs to easily use Intel SGX features. The current
version supports only user-mode emulation, but we plan to
extend OpenSGX for system-wide emulation as well.

• Enclave program loader: To launch an enclave program,
code and data sections to be executed inside the enclave
must be properly loaded to EPC, beyond the measurement
and attestation. ENCLS instructions allow provisioning of
enclave on an EPC page-by-page basis. Our OpenSGX loader
automatically takes care of the process by loading the enclave
code and data sections into EPC and provisioning an enclave
heap and stack regions (§IV-C).

• OpenSGX user library (sgxlib): OpenSGX provides a set
of useful functions, (sgxlib), that can be used inside and
outside the enclave (§IV-D). It provides wrappers for all
SGX user-level instructions, as well as high-level APIs—
for example, sgx_host_read/write() for copying data from
and to an enclave program. The in-enclave APIs that sgxlib
provides have been designed to thwart known attack vectors
such as Iago attacks and more generally, deputy attacks.

• Debugger support: OpenSGX naturally allows easy debug-
ging of the emulation platform due to the nature of software-
based emulation. However, for SGX applications, QEMU’s
binary translation can make debugging more difficult because
a debugger can only observe translated instructions. Thus,
we extend gdb to map to the instruction being emulated. We
also expose key SGX data structures (e.g., EPCM) through
gdb commands (§IV-E).

• Performance monitoring: Finally, OpenSGX supports per-
formance counters/profiler and allows users to collect perfor-
mance statistics (e.g., the number of enclave-to-host context
switches) about enclave programs (§IV-F).

B. Development Lifecycle with OpenSGX
OpenSGX provides a rich development environment, allow-

ing the research community to easily emulate a program running
inside an enclave. In this section, we show the development
lifecycle of an enclave program and highlight potential research
opportunities that reside at each point of the cycle.
Lifecycle 1: Development. Developing an enclave program
in OpenSGX is as simple as developing an ordinary program
written in C language, using our convenience library, sgxlib.

Figure 2 shows one of the simplest enclave programs.
Developers can solely develop a C program to be executed
inside an enclave, similar to hello.c. We use wrapper.c to
demonstrate how a developer can launch and execute an enclave
program by using the APIs provided by sgxlib. Note that
enclave_main() is merely a default entry point that is loaded
to the enclave in this example. Using the section attributes
and sgxlib APIs, programmers can also specify additional
code and data sections to be loaded in the enclave or create
multiple enclaves. Also, sgxlib defines specific APIs to support
host-enclave communication.

The clear, easy-to-use programming model and a conve-
nience library allow developers to easily create an enclave
program. The separation of enclave code and data sections in
the code also helps them to separate security-sensitive pieces
of application code (PAL) [34] for isolated execution.
Lifecycle 2: Launch. OpenSGX provides a toolchain,

opensgx, to compile the code into an OpenSGX-aware binary
(a .sgx file) linked to sgxlib (see Figure 2). It also generates
a configuration file (a .conf file) that contains the program
measurement (a hash value), signature signed by a specified
RSA key, and other enclave properties that are required to
validate the program during the enclave initialization.

To execute the enclave program, OpenSGX performs the
following tasks: (1) performs the bootstrapping process via
sgx_init(); (2) leverages OpenSGX loader API with program
information obtained from ELF files (e.g., offset and size
of code and data sections) to pre-load the program into
allocated memory; (3) initiates enclave initialization by using
init_enclave(); (4) Once the enclave initialization is done,
the host program transfers the program’s control to the enclave
program via sgx_enter(), which is the wrapper of EENTER.
Lifecycle 3: Execution. OpenSGX enforces the SGX memory
access policy on the enclave program by interposing every
single memory access through QEMU’s binary translation.
Any access violation, such as memory write from non-enclave
memory to enclave memory, results in a general protection
fault.

Since an enclave program can legitimately access its host
memory, any such access can open new attack surfaces to
the enclave. To minimize the attack surfaces, sgxlib provides
substitute APIs that allow an enclave program to avoid the
use of a shared library that resides in the host memory.
OpenSGX also provides a stricter form of communication
protocol by using shared code and data memory, called
trampoline and stub, respectively. After completing tasks in
enclave mode, the enclave program exits this mode with the help
of EEXIT instruction, thereby returning the program’s control
back to the location right after the EENTER instruction. Note
that it is an operating system’s responsibility to reclaim the
EPC pages (i.e., EREMOVE), perhaps when its wrapper process
terminates. However, OpenSGX leaves this clean-up routine
unimplemented, as only one enclave runs on an OpenSGX’s
instance.
Lifecycle 4: Debugging and performance monitoring.
OpenSGX supports debugging and performance monitoring.
Although OpenSGX is not a cycle-accurate emulator, it exposes
a system call to query the OpenSGX emulator about statistics,
such as the number of context switches that occurred and
SGX instructions executed. SGX researchers can utilize this to
estimate the performance implications of an enclave program.

IV. OPENSGX DESIGN

In this section, we provide OpenSGX’s design in various
levels of abstractions, ranging from the hardware emulation to
a user-level library and utilities.

A. Hardware Emulation
OpenSGX emulates the hardware specification of In-

tel SGX by leveraging the dynamic binary translation of
QEMU. OpenSGX enables instruction-to-instruction compati-
bility; achieving binary-to-binary compatibility is presently not
possible because ABI is not officially specified by any entity,
neither by OS nor hardware vendors, yet.
Instruction Set Architecture (ISA). OpenSGX supports
instruction-level compatibility (revision 1 and 2 of Intel SGX)
to SGX-aware binaries by implementing the core Intel SGX
instructions. OpenSGX also provides simple C APIs that directly
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0x0000
enclave_main()

Code
EPC1

Data
EPC2

0x1000
"hello sgx\n"

Entry point: 
SigStruct: ....

Packaged Enclave Program

1 /* wrapper.c */
2 #include <sgx-lib.h>
3

4 int main(int argc, char **argv)
5 {
6 sgx_init();
7 /*
8 * Take section information from ELF file as input
9 * and compute entry_offset, program_size (code + data).

10 */
11 ...
12 char *base = OpenSGX_loader("hello.sgx",
13 binary_size,
14 section_offset,
15 program_size);
16 tcs_t *tcs = init_enclave(base,
17 entry,
18 program_size,
19 "hello.conf");
20 sgx_enter(tcs, exception_handler);
21

22 char *buf = malloc(11);
23 sgx_host_read(buf, 11);
24 printf("%s", buf);
25

26 return 0;
27 }

1 /* hello.c */
2 #include <sgx-lib.h>
3

4 void enclave_main()
5 {
6 char *hello = "hello sgx!\n";
7 sgx_enclave_write(hello, sgx_strlen(hello));
8 sgx_exit(NULL);
9 }

1 $ opensgx -k
2 > generate sign.key
3 $ opensgx -c hello.c
4 > generate hello.sgx executable
5 $ opensgx -s hello.sgx --key sign.key
6 > generate hello.conf
7 $ opensgx hello.sgx hello.conf
8 hello sgx!

Fig. 2: Example code snippet: “hello sgx!”

wrap the assembly code for each SGX instruction. It is
worthwhile to mention that there are two types of instructions
in Intel SGX depending on the required privilege: user privilege
for ENCLU leaf instructions and super privilege for ENCLS leaf
instructions (see Figure 1). Accordingly, user-level instructions
are accessible to a user-level library, called sgxlib (see §IV-D),
and super-level instructions are only accessible by the OS
emulation layer of OpenSGX (see §IV-B).

To be clear, we currently do not support instructions for
debugging (e.g., EDBGRD). However, as OpenSGX is a software
emulator, it provides a better debugging interface (e.g., reading
or writing enclave memory regions) and greater flexibility. Also,
OpenSGX does not implement paging (e.g., features related
to maintaining page tables), as it utilizes user-level dynamic
translation. This design decision is intentional; otherwise,
OpenSGX users must install a custom operating system to run
an enclave program, making it cumbersome and inconvenient.
Enclave Page Cache (EPC). OpenSGX takes advantage
of QEMU’s user-mode emulation for EPC management. To
emulate EPC, we set aside a contiguous memory region
that represents the physical EPC available in the system,
the same address space of the emulated process. In Intel
SGX, the EPC region is configurable via BIOS at boot time
by using the Processor Reserved Memory (PRM) [21, 22].
Similarly, to reserve an EPC area in the QEMU user-mode,

OpenSGX introduces a custom bootstrapping mechanism. Upon
the initialization of an enclave program, the host program
invokes a special system call, namely sgx_init(), that allocates
and initializes the system-wide EPC pages. The sgx_init()
system call first reserves a memory region (a contiguous virtual
address space) for EPC and then notifies the reserved region
to the QEMU via a special instruction. At runtime, the QEMU
instruction translator enforces the access permission of the
memory region allocated for EPC pages.

To be precise, a significant difference between the OpenSGX
emulation and the Intel SGX hardware is that, while Intel SGX
keeps track of the permission of EPC pages via MMU (physical
address), OpenSGX mimics the behavior of such enforcement
at the user space (virtual address).
EPC access protection. To protect the memory of enclaves
(isolation), OpenSGX needs to ensure that an enclave accesses
only its own EPC pages and normal processes never access the
enclave memory. To enforce such memory accesses, OpenSGX
interposes every single memory access and checks the execution
context (e.g., enclave or non-enclave) and the corresponding
access permission. Specifically, OpenSGX instruments all
memory accesses by checking the memory operands of all
x86 instructions. Also, for access control to individual EPC
pages, OpenSGX maintains their access permissions and the
owner enclave in a CPU-specific data structure, called Enclave
Page Cache Map (EPCM), following the Intel SGX [21, 22][Ch.
1.5.1].

OpenSGX defines two kinds of memory accesses: enclave
accesses that are initiated by an enclave program and non-
enclave accesses that are equivalent to traditional memory
accesses [21, 22][Ch. 2.3]. However, regardless of CPU modes
(i.e., enclave mode or not), all memory accesses should be
coordinated by an underlying memory management unit (e.g.,
permissions in the page table entries), which means an enclave
program and its host application will share a process’ linear
address.

Depending on the entity (from enclave or host code) and
the type of memory region (either enclave or host data), Intel
SGX decides whether to approve the requested memory access
or not [36]. Memory accesses to own data or code are always
permitted (e.g., enclave code → its data or host code → its
data); however, memory accesses to another enclave’s code
are strictly prohibited. Note that memory accesses from an
enclave to its host’s data or code are permitted [36][Figure
2]. OpenSGX leverages this to set aside a shared memory for
communication between enclaves and their host programs (e.g.,
trampoline), as explained in §IV-D.
EPC encryption. OpenSGX is not intended to run en-
clave programs under strong adversarial models; the TCB of
OpenSGX includes its emulation layer, host operating system,
and hardware, unlike Intel SGX, which can provide a strong
protection of running enclaves with a single trust, the CPU.
Accordingly, OpenSGX does not perform encryption for every
single memory operation, but rather simply restricts the memory
accesses to the EPC region because this relaxation does not
affect the functional correctness of OpenSGX.

However, OpenSGX as a baseline platform can be easily
extended to implement various types of Memory Encryption
Engines (MEE) or exploratory encryption schemes for research.
Furthermore, combined with the precise cache tracking provided
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by QEMU, one can quantitatively measure and compare the
performance of potential encryption schemes. For example,
AES CTR Encryption or MAC algorithms described in the
Intel SGX Workshop [24] can be easily implemented and
their performance impact can be studied in a well-controlled
environment.
Data structures and SGX processor key. To accurately em-
ulate Intel SGX, OpenSGX implements critical data structures
described in the Intel SGX specifications from Intel, including
SGX Enclave Control Structure (SECS), Enclave Signature
Structure (SIGSTRUCT), Thread Control Structure (TCS), and
Enclave Page Cache Map (EPCM) inside the emulator as
additional states for the CPU (see Table II). Finally, OpenSGX
provides a configurable SGX processor key, which is a unique
key that Intel SGX provisions to each processor. SGX processor
key serves as the root of the key hierarchy that is used to
generate keys, including launch key, report key, provision key,
and seal key. Note that Intel SGX uses a group signature
scheme (EPID [9]) for attestation and verification to prevent
an SGX-equipped platform from being uniquely identified. In
our current implementation, we use a public signature scheme
(RSA) as a proof-of-concept and leave the adoption of an
EPID-like infrastructure as future work.

B. OS Emulation Layer
Intel SGX does not work out-of-box for end-users. It

requires an intimate assistance from operating systems to
properly launch an enclave program. In OpenSGX, instead
of requiring users to use a specific type of operating system
or relying on a custom implementation, we expose an OS-
neutral interface by implementing an underlying emulation layer
that executes the privileged SGX instructions. The OpenSGX
OS emulation layer implements a set of new system calls
for enclaves, described in Table III. The OS emulation layer
provides three major services for enclave programming: 1)
enclave initialization, 2) EPC page translation, and 3) dynamic
EPC page allocation. In addition, OpenSGX implements two
additional system call interfaces to bootstrap the emulated
hardware and to fetch the internal report generated with the
performance profiler.
Bootstrapping. sys_init() performs the bootstrapping pro-
cess as described in §IV-A. After bootstrapping, the OS
emulation layer obtains a contiguous chunk of EPC and its
physical address. Then, we can use the EPC region to initialize
an enclave. Note that the EPC access is controlled by OpenSGX
QEMU, and thus is only visible to QEMU. The OS must map
EPC pages to an enclave using appropriate instructions before
an enclave can access EPC pages.
Enclave initialization. OpenSGX initializes an enclave with
four SGX instructions, namely ECREATE, EADD, EEXTEND, and
EINIT. A new system call, sys_create_enclave(), is imple-
mented to initiate, extend, and measure an enclave program, and
requires privileged SGX instructions. ECREATE first creates an
empty enclave by allocating the number of requested EPC pages
(specified in n_of_pages) and initiates the measurement of
the new enclave. Starting from base_address, which indicates
the starting address of code and data memory, EADD loads all
pages in this source memory to the allocated EPC pages in
sequence. Whenever a new EPC page is added, EEXTEND needs
to be executed to correctly measure the page content, and it
extends the measurement registers of the initializing enclave.

Finally, EINIT completes the enclave measurement and the
initialization process. sig and token are used to verify the
enclave measurement, representing SIGSTRUCT and EINITTOKEN
respectively. sig contains a pre-computed enclave measurement,
a signature over the data structure using a private key (usually
signed by developer), and also the corresponding public key that
represents the certified issuer. During EINIT, the pre-computed
enclave measurement is first verified by using the signature and
the public key. Then, OpenSGX compares the pre-computed
measurement with the final measurement. If two measurements
are equal, the enclave becomes ready to securely execute the
enclave code in isolation.

To support multiple enclaves concurrently, OpenSGX main-
tains a per-enclave structure that describes the execution context
of each enclave; for example, an enclave id, contents of TCS,
and stack size are stored, similar to task_struct in Linux. The
structure also contains debugging information and performance
counters (e.g., the number of leaf commands executed), leaving
rooms for future extensions for research.
EPC page translation. For convenience, the OS emulation
layer of OpenSGX pretends to identically map the virtual
address of EPC pages to the physical memory space, similar
to the direct-mapped regions in the Linux kernel. This design
decision simplifies the implementation of the emulated OS and
helps researchers using OpenSGX to conceptually distinguish
physical and virtual addresses in their projects.
Dynamic EPC page allocation. The Intel SGX revision
2 [5, 22] provides a mechanism to dynamically expand
the enclave memory by using EAUG and EACCEPT. Based on
these two instructions, OpenSGX provides sys_add_epc() to
dynamically allocate additional EPC pages for the enclave that
requires more memory. When an enclave needs a new EPC
page, the emulated OS allocates a free EPC page via EAUG.
Then the enclave should invoke EACCEPT to accept the new
page to its own enclave region. In fact, EACCEPT embodies a
few interesting checks that play a key role in thwarting the
Iago attack, which is descried in §IV-D.
Performance monitor. When an enclave is created, OpenSGX
keeps track of the new enclave by assigning a custom identifier
(keid) in the emulated OS and a descriptor. For the given
keid, the enclave descriptor collects stat/profiling information
including statistics and enclave-specific metadata (e.g., SECS and
TCS). A host application later can query the collected profiling
information through sys_stat_enclave().
System call emulation. The OS emulation layer is imple-
mented as a user space library that OpenSGX programs can
link to. Thus, we emulate the system call interface using the
function calls that follow the convention implemented in the
compiler, instead of using the conventional system call interface.
When a system call is invoked inside an enclave, a context
switch occurs by first storing the context of the enclave inside
a specially reversed region inside the EPC, called State Save
Area (SSA). Then, we exit the enclave and context switch to
the kernel. After the kernel’s execution of the system call, it
returns back to the enclave to restore its context and verifies the
kernel’s return value inside the enclave. sgxlib, described in
§IV-D, automatically performs these tasks during the invocation
of sys_add_epc().
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Instruction Description

bool sys_sgx_init() Allocates EPC, sets cpusvn, and initializes sgx and custom data structures in QEMU side.

int sys_init_enclave( Allocates, adds, measures EPC pages, and initialize OS-specific structures.
void *base_address, Starting address of code/data pages, a linear address
unsigned int n_of_pages, The number of total pages to be loaded
tcs_t tcs, Thread control structure address used for entering enclave, a linear address
sigstruct_t *sig, Information about the enclave from the enclave signer
einittoken_t *token) Token for verifying that the enclave is permitted to launch

Leaf commands: ECREATE, EADD, EEXTEND, EINIT

unsigned long sys_add_epc( Allocates a new EPC page to the running enclave.
int keid) Enclave id

Leaf commands: EAUG

int sys_stat_enclave( Obtains the enclave stats: such as eid, #encls, #enclu calls, allocated stack/heap, perf etc.
int keid, Enclave id
keid_t *stat) Container of stat information of enclave

TABLE III: List of system calls that OpenSGX newly introduced to the kernel in order to coordinate enclave programs. In Intel SGX, the
operating system should be in charge of authorization, fairness, and execution of the requested enclave program in order to fully take advantages
of the OpenSGX-compatible hardware. We introduced four different system calls (not specified in Intel SGX) and explored the possibility of
deploying a subsystem to support Intel SGX in the commodity operation system such as Linux.

C. OpenSGX Toolchain, Compilation and Loader
OpenSGX provides a toolchain, called opensgx, that auto-

mates the building process of an enclave program. Figure 2
shows an example of how developers can use opensgx to
generate an OpenSGX-aware binary (a .sgx file) that contains
code and data for enclave programs, as well as a configuration
file (a .conf file) that contains required keys and measurement
for SIGSTRUCT and EINITTOKEN data structures.
Compilation. One key feature of opensgx is that it generates
a binary that can be easily relocated to EPC. According to the
SGX specification, EADD instruction loads code and data into
EPC by direct memory copying, which implicitly assumes that
developers take care of program relocation by themselves. To
ease the developers’ efforts in handling program relocation,
OpenSGX provides a build script to automatically tweak the
compilation options to make the enclave code and data easily
relocatable at runtime. More specifically, OpenSGX provides
a custom linker script that specifies the locations of all code
and data (including initialized, uninitialized, and global data
sections) properly onto the enclave address space.

After the compilation with opensgx, the final enclave binary
will include a set of pre-defined symbols (e.g., enclave_main()
that describes the entry point of the enclave code) and embed
sgxlib as a separate section. For more involved source code,
developers can provide a custom linker script that specifies
the code (.enc_text) and data (.enc_data) sections to be
included in the enclave. As an optimization, OpenSGX can
avoid additional relocation of both sections by statically linking
all symbols at compile time.
Loader. OpenSGX loader determines the memory layout
of code, data, stack, and heap sections, and necessary data
structures on the EPC region during the initialization of an
enclave. Similar to a typical loader, the OpenSGX loader
obtains the information of code and data sections (i.e., offset
and size of .enc_text and .enc_data sections) and the program
base address from corresponding ELF files. The required
enclave size and the memory layout are determined based
on code and data size, memory configuration (we set default
heap and stack size and allow developers to easily adjust),
and other necessary data structures (see Figure 3). Then, the
OpenSGX loader forwards the memory layout information to

Host Program

Code

.enc_text

OpenSGX-aware 
Binary

opensgx_load()

code
sgxlib

.sgx

0x8000

Enclave code/data

Enclave code

Enclave data

0x8000

.enc_data

EPC 
pages

sys_create_enclave()

SECS, TCS, SSA

SECS, TCS, SSA

Fig. 3: Loading process performed by OpenSGX loader. First,
.enc_text and .enc_data sections are loaded in to host memory.
OpenSGX loader then forwards two sections along with stack, heap,
and other necessary data structures to EPC via sys_create_enclave().

the OS emulation layer to initiate the enclave initialization
process. Note that the starting address of EPC for loading is
statically determined by the base address of code and the data
section so that the base address remains the same after loading
into EPC.

D. OpenSGX User Library
sgxlib is a user-level library for enclave that is designed

to (1) facilitate the enclave programming and (2) minimize the
attack surface between the enclave and its potentially malicious
host process. Table IV lists APIs implemented by sgxlib,
classified into HOST for host applications and ENCLAVE for
enclave programs. This section describes the design decisions
made in sgxlib and its security considerations.
Custom in-enclave library. Standard C libraries, such as
glibc, are frequently used by normal C programs. However,
using standard C libraries inside an enclave raises two concerns:
(1) any function call that relies on OS features or resources
will break the execution of enclave programs and (2) enabling
such functions opens up new attack surfaces (e.g., malicious
host can return a crafted input to the enclave). Thus, we
implement a number of custom library functions that have
a similar counterpart in the standard library, but we add a
sgx_ prefix to distinguish the two (e.g., sgx_memmove() for
memmove()).
Trampoline and stub. Although an enclave can legitimately
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Type API Description

HOST void sgx_init(void) Perform system initialization
HOST void sgx_enter(tcs_t tcs, void (*aep)()) EENTER wrapper
HOST void sgx_resume(tcs_t tcs, void (*aep)()) ERESUME wrapper
HOST int sgx_host_read(void *buf, int len) Read from enclave
HOST int sgx_host_write(void *buf, int len) Write to enclave
HOST void launch_quoting_enclave(void) Launch quoting enclave

ENCL void sgx_exit(void *addr) EEXIT wrapper
ENCL void sgx_remote(const struct sockaddr *target_addr, socklen_t addrlen) Request remote attestation
ENCL void sgx_getkey(keyrequest_t keyreq, void *key) EGETKEY wrapper
ENCL void sgx_getreport(targetinfo_t info, reportdata_t data, report_t *report) EREPORT wrapper
ENCL int sgx_enclave_read(void *buf, int len) Read from host
ENCL int sgx_enclave_write(void *buf, int len) Write to host
ENCL void *sgx_memcpy(void *dest, const void *src, size_t size) Memory copy
ENCL void *sgx_memmove(void *dest, const void *src, size_t size) Memory copy
ENCL void sgx_memset(void *ptr, int value, size_t num) Memory set to the specified value
ENCL int sgx_memcmp(const void *ptr1, const void *ptr2, size_t num) Memory comparison
ENCL size_t sgx_strlen(const char *string) Get string length
ENCL int sgx_strcmp(const char *p1, const char *p2) String comparison
ENCL int sgx_printf(const char *format, ...) Write formatted data to standard out

TABLE IV: List of APIs in sgxlib. HOST APIs are for host process and ENLC is for in-enclave use.

access the host memory shared outside the enclave, it is not a
recommended practice since a malicious host or operating
system can potentially modify non-enclave memory. Thus,
instead of allowing such a practice, OpenSGX provides a
stricter form of communication protocol by using shared
code and data memory—we call them trampoline and stub,
respectively. The use of trampoline and stub defines a narrow
interface to the enclave, which is readily tractable for enforcing
the associated security properties.

The communication is one-way and entirely driven by
the requesting enclave. For example, to request a socket for
networking (see Figure 4), the enclave first sets up the input
parameters in stub (e.g., sets fcode to FSOCKET in Figure 4),
and then invokes a predefined handler, trampoline, by exiting
its enclave mode (i.e., by invoking EEXIT). Once the host
program (or OS) processes the enclave request, it stores the
result or return values to stub and enters the enclave mode
again by invoking ERESUME. After transferring the program’s
control back to the known location inside the enclave, the
enclave program can finally obtain the returned value (e.g.,
socket via in_arg0 in stub). The current design of trampoline
and stub is extensible enough for other purposes, allowing
customization by enclave developers without reinventing the
whole communication protocols.
Enclave-Host communication. sgxlib provides a dedicated
communication channel between an enclave and its host, similar
to a pipe. The host program sends data via sgx_host_write()
(respectively sgx_host_read() for receiving) and the en-
clave receives data via sgx_enclave_read() (respectively
sgx_enclave_write() for sending). The communication APIs
are implemented by using stub (without trampoline). More
specifically, we pre-allocate two memory blocks alongside stub
to support two different data flows. For security reasons, the
memory block is cleared before/after each write/read operation.
Dynamic memory allocation. Although it is permitted
for an enclave program to use dynamically allocated host
memory, it can severely break the enclave isolation feature.
To avoid this, sgxlib supports a customized dynamic memory
allocation API, sgx_malloc(), which behaves similarly to glibc
malloc() [50], but only allocates memory from the enclave
heap (pre-allocated EPC pages, see Figure 3). sgx_malloc()

Enclave Program

Code
...
sgxlib

Trampoline

Stub

Host Program

in_arg0

sgx_socket_tramp()

EEXIT

ERESUME

fcode
out_arg0
out_arg1
out_arg2

...

(shared)

sgx_socket(){
  ...
}

fcode 
 → FSOCKET
out_arg0 
 → domain
out_arg1
 → type
out_arg2
 → protocol

return
 → in_arg0

sgx_socket()

socket(out_arg0,
          out_arg1,
          out_arg2)

 →

EPC pages Shared memory

Fig. 4: Interface defined for communicating with the enclave’s host
program that performs the delegated calls to the operating system. In
this figure, a sgxlib library, sgx_socket(), running inside the enclave,
requests a socket system call via trampoline and stub, which are
pre-negotiated between the enclave and its wrapper when packaged
together.

manages the enclave heap by maintaining heap pointers, which
are initially set to the heap with the aid of OS during the
first initial sgx_malloc() call. When a pre-allocated heap area
becomes full, sgx_malloc() leverages the dynamic EPC page
allocation (via sys_add_epc()) to extend the enclave heap. With
EAUG/EACCEPT, the dynamic EPC page allocation ensures that
only a zero-filled EPC page, with an associated pending bit of
EPCM, is added to the enclave that invoked EACCEPT. Since the
pending bit can be switched only by executing EAUG/EACCEPT,
a malicious OS cannot deceive (Iago attack) the enclave to
add another EPC page. If an attacker passes an address that
overlaps an EPC stack page to EACCEPT, it returns an error
code.
Defense against malicious host application and OS. To
provide enclave with the ability to communicate with host
application or OS, it is unavoidable to introduce additional
attack surfaces to the enclave, which is often known as Iago
attacks [11]. sgxlib is designed after careful consideration of
the Iago attacks, broadly in three aspects: dynamic memory
allocation, network and I/O, and non-determinism/resources.
Note that Intel SGX neither prevents denial-of-service attacks
nor guarantees strong privacy (e.g., IP address), but provides
strong isolation and confidentiality. With this in mind, we
inspect potential attack surfaces in Table V and discuss defenses
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Type Interface Attack surfaces In-enclave usage/check

MEM sgx_malloc() → <out>addr 1) incorrect pointers 2) incorrect EPC page addition EACCEPT verifies the status of a new EPC page
MEM sgx_free() → N/A 1) not freed (used later for use-after-free) sgx_free() fills a freed chunk with zero
DBG sgx_puts() → N/A 1) ignored output No general way to prevent without trusted I/O
TIME sgx_time() → <out>time 1) arbitrary time Validate time from the NTP server (not implemented)
RAND sgx_rand() → <out>rand 1) arbitrary value Relying on rdrand inst (emulated if not supported)
IO sgx_write() → <out>len 1) arbitrary reported len No general way to prevent without trusted I/O
IO sgx_read(<out>*buf) → <out>len 1) crafted buf, 2) incorrect len Encrypted message with integrity checking
IO sgx_close() → N/A 1) not closed Never reuse fd (monotonically increasing int)
NET sgx_socket() → <out>fd 1) non-closed fd, 2) incorrect fd Relying on packet encryption
NET sgx_send() → N/A 1) ignored Relying on packet encryption
NET sgx_recv(<out>*buf) → <out>len 1) crafted buf, 2) incorrect len Relying on packet encryption
NET sgx_accept() → <out>fd 1) pre-allocated fd, 2) arbitrary number Relying on packet encryption
NET sgx_bind() → N/A 1) failed binding Stop-on-failure
NET sgx_listen() → N/A 1) failed listen Stop-on-failure
NET sgx_connect() → <out>err 1) failed connection Stop-on-failure

TABLE V: Consideration of Iago attacks in primitive sgxlib functions that are implemented by using the shared trampoline between host and
enclave programs. Note that Intel SGX does not consider denial-of-service attacks (e.g., stopping enclave execution) nor strong privacy (e.g.,
where to talk to).

on each category of attack.
• Memory-related operations (marked MEM): Since the Intel

SGX revision 2, enclave programs can dynamically request
EPC pages at runtime, which opens a large attack surface,
traditionally known as Iago attacks. However, Intel SGX
takes this into account and provides an EACCEPT instruction
that performs basic validation on newly assigned EPC pages
(e.g., non-enclave pages or pre-allocated EPC pages), which
thwarts a major source of memory-related attacks.

• Network and I/O services (marked IO, NET): Two prin-
ciples are considered to prevent network- and I/O-related
attacks: encryption and the fail-stop model. To guarantee the
confidentiality of packets, enclave programs should encrypt
all out-going packets and also validate the integrity and
authenticity of packets on all incoming packets. Upon any
failure, the enclave stops its execution, which dramatically
reduces the potential attack surface in handling all errors
and corner cases.

• Non-determinism and resources (marked DBG, TIME,
RAND): Enclave programs often need time and randomness
to provide rich experiences to users. To prevent Iago attacks,
OpenSGX attempts to fetch such values from trusted parties:
time from trusted entities (e.g., an encrypted packet from
known NTP servers) or randomness from trusted CPU (e.g.,
rdrand instruction).

Remote Attestation. OpenSGX provides sgx_remote() with
which the programmers can readily generate a remote attestation
request in an enclave program through a single API. It uses
sgx_getkey() and sgx_getreport() to get a report key and
create a report. By specifying the socket information of a target
enclave, a challenger can issue a remote attestation to check
(1) the correctness of the target program (based on the hash
of EPC contents) and (2) whether it is actually running inside
an enclave on the SGX-enabled platform (MAC with report
key). To launch and service a special enclave called quoting
enclave that verifies a target enclave through intra-attestation,
OpenSGX also provides launch_quoting_enclave() host API.
The overall procedure of remote attestation in OpenSGX is
implemented based on the SGX specification [2] by using an
RSA key scheme as an alternative to EPID (see §IV-A).

E. Debugging
Debugging is an essential feature for OpenSGX program-

mers to develop SGX-aware applications. As a software
emulator, OpenSGX can be easily integrated with a mature
debugging infrastructure such as gdb, not only to mimic Intel
SGX debugging-related instructions but also to examine the
status of internal hardware.
Debugging hardware. The hardware components of Intel SGX
are neither observable nor modifiable in real hardware. However,
because OpenSGX emulates them using software, developers
can observe the inner working of Intel SGX instructions and
internal data structures stored inside the hardware (e.g., EPCM).
OpenSGX provides a gdb interface to debug its emulated
hardware components.
Debugging enclaves. Since OpenSGX is implemented by
using QEMU’s dynamic code translation (known as TCG),
the gdb on OpenSGX can only see the instructions translated
by the TCG, not the application’s original instructions. To
provide a single stepping feature in debugging an enclave code,
we implement gdb-stub, which is a platform to support a
bridge to the remote gdb instance. The gdb-stub inside QEMU
helps gdb to understand the context of the enclave’s original
instructions, thus enabling a convenient single-step debugging.
Once a remote gdb instance is connected, developers can debug
enclave programs with a familiar gdb interface.
New gdb commands. On top of the built-in gdb commands,
OpenSGX provides four new useful gdb commands that
researchers can use in debugging enclave programs. They are
info epc, info epcm, and info secs to examine EPC-related
data structure, and list enclaves to list all the active enclaves
(and their contexts) with corresponding eid. All new commands
are implemented by using the gdb-python script.

F. Performance Monitoring
Unlike real hardware, the emulation environment can

provide a precise, yet flexible way to measure performance
aspects of running enclaves. Since the wall-clock time is not
a meaningful metric in OpenSGX, we provide various other
metrics (e.g., context switches, invocations of SGX instructions)
that are useful to understand the performance characteristics
of an enclave.

OpenSGX keeps track of such information in a per-enclave
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Component Lines of code

QEMU SGX 5,954 lines of C
OS emulation 1,531 lines of C
SGX libraries 2,978 lines of C
Examples 1,532 lines of C
Tool 2,199 lines of C
Tor 5,087 lines of C
Total 19,281 lines of code

TABLE VI: The modified lines of code for each component in
OpenSGX.

data structure, called an enclave descriptor, that stores the
fields such as TCS and usage statistics. In particular, it counts
the number of context switches, the entries/exits of the OS
emulation layer; the number of ENCLU/ENCLS leaf instructions
that can indicate the behavior of an enclave; the number of
TLB flushes, as it is reported as the main overhead in enclave
transition [5]; and the number of dynamically allocated EPC
pages, which is a good indicator to the enclave memory usage.
Then, the host program later can query its statistics through
the sys_stat_enclave() system call.

As OpenSGX is built on top of the software stack, it
can be easily extended to measure other behaviors, such as
Last Level Cache Misses [42]. However, the current prototype
neither provides nor guarantees any precision of direct and time-
oriented performance characteristics of enclaves running on
Intel SGX, because OpenSGX never reflects the actual cost of
memory isolation or encryption provided by the SGX hardware
during the emulation.

V. OPENSGX IMPLEMENTATION

Table VI shows the number of lines of code (LoC) of
OpenSGX’s components. OpenSGX and its applications consist
of approximately 19K lines of C code with QEMU SGX being
the largest component.

To implement QEMU SGX, we extensively modify several
components of QEMU. In particular, QEMU holds all x86
CPU register values, such as EIP, in a data structure called
CPUX86State that represents the CPU state of the guest machine.
We extend the CPU state by adding the CREGS data structure [21,
22], to support additional CPU states introduced by OpenSGX.
The CREGS structure maintains registers related to the enclave
context, such as the on/off state of enclave mode and the current
instruction pointer.

To control a program’s next executing point upon enclave
entries/exits, we execute our mode checking routines before
generating a new translation block (TB). For example, if a TB
executes an ENCLU instruction (except EEXIT) and enclave mode
is on, the CR_CURR_EIP value in CREGS overwrites the EIP in
CPUX86State. Since CR_CURR_EIP is supplied while emulating
the ENCLU instruction, it directs QEMU to generate/execute the
next TB from the supplied EIP instead of the one determined
from executing the current TB without ENCLU.

To emulate ENCLU/ENCLS instruction families and mem-
ory protection, we utilize the QEMU helper routine. The
QEMU helper routine, which consists of gen_helper_*()
and helper_*(), was originally designed to interpose an
event such as an interrupt while emulating guest instructions.
We add gen_helper_enclu/encls() functions at the point
where the opcode for ENCLU/ENCLS instruction is found, while
translating a guest instruction. This ensures that QEMU calls

Attacks Target node Description

Compromising keys Directory Tampering with voting/consensus creation
Constructing Directory Tie-breaking, Include compromised ORsbad consensus
Spoiled Onion [52] Exit node HTTPS man-in-the-middle attack, sslstrip
Bad Apple [6] Exit node De-anoymize, plaintext tampering/snooping

TABLE VII: Attacks on Tor

Node type Data structure Description

Directory node Identity key Certify signing key
Signing key Sign vote and consensus

Exit node Identity key Sign router descriptor/TLS certificate
Onion key Encrypt/decrypt cells

TABLE VIII: Key data structures of Tor that are protected inside the
enclave

helper_enclu/encls() when the ENCLU/ENCLS instruction is
invoked. Then, we implement the ENCLU/ENCLS leaf instructions
inside helper_enclu/encls(). For memory protection, we
insert gen_helper_mem_access() at all points where an instruc-
tion causes memory load/store, and gen_helper_mem_execute()
before jmp/call/ret instructions. The former enforces mem-
ory access control according to enclave mode state and
EPCM’s read/write permissions, whereas the latter performs
Data Execution Prevention (DEP) within the EPC according
to EPCM’s execute permission. If the enclave mode is on,
helper_mem_access() generates an exception when an enclave
code is trying to access EPC outside its enclave or EPCM’s
read/write/execute permissions are violated. If the enclave mode
is off, all accesses to the EPC region are simply blocked.

VI. APPLICATION CASE STUDIES

To evaluate OpenSGX, we develop a number of applications
utilizing SGX. Our experience demonstrates that OpenSGX
supports non-trivial applications and is a suitable platform for
testing new ideas and developing SGX applications. We focus
on two applications, namely Tor and secure I/O paths.

A. Shielding Tor Nodes
Motivation. The Tor network relies on a network of world-
wide volunteers to achieve anonymous communication. While
the software is open source and publicly available for verifi-
cation, its hardware is donated by volunteers who run pieces
of Tor software (e.g., onion routers [15]). Thus, the current
model is that users (semi-) trust the execution environment that
volunteers provide using the hardware and operating system
of their choice. When a security breach actually occurs to a
server that hosts Tor’s directory service, identity keys of the
server need to be replaced. This causes users to update their
software, which is very cumbersome [14].

Applying trusted execution on the core components of Tor
will strengthen the security of the Tor network and enhance its
trust model. Instead of trusting the hardware and the system
software that hosts Tor relays, users can simply trust the
underlying TEE. Using TEEs also allows us to secure the
interactions between Tor nodes, allowing Tor to deliver its
anonymity service on top of a distributed TEE.

To demonstrate the benefits, we first look at the known
attacks on Tor and examine how trusted execution may
strengthen the security of the Tor network. Finally, we present
a design and implementation of Tor that utilizes the TEE.
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Node type Enclave Operations Non-enclave Operations

Both Create key pairs, offer key information Transfer control/relay cells, initialize data structures, ...
Directory node Create certificates, sign and verify vote/consensus Transfer votes, broadcast consensus, TLS connection, ...
Exit node Create TLS certificates, encrypt/decrypt packets Get connection with destination, send/receive packets, ...

TABLE IX: Separation of Tor operations in a directory server and an exit node. Operations which accesses to sensitive data are located inside
the enclave. Rest of Tor operations are executed in untrusted region for saving EPC pages.

Threat model. Previously known attacks on Tor that
deanonymize Tor users can be divided into two categories
in terms of the target of manipulation [47]: manipulating Tor
components [30, 53] and manipulating routing [26, 47]. We
assume the attack model that manipulates the Tor components,
including Tor nodes and directory servers, by gaining control
over the nodes. The consideration of network-level adversaries,
such as a man-in-the-middle and AS-level adversaries, is out
of scope in this paper.

Tor consists of a small number of directory servers. Attacks
mainly target the directory server, entry, and exit node because
subverting the middle relay nodes is not sufficient to break
Tor’s anonymity. There are several known attacks and reported
security incidents to Tor [14]. Table VII summarizes several
known attacks against Tor. The first two target the directory
server to either compromise the directory server’s key or force
them to sign an arbitrary consensus that an attacker specifies.
Attackers then can leverage this power to admit malicious Tor
nodes that themselves control and influence Tor nodes that users
choose from. Once attackers have control over Tor nodes, they
can launch attacks to break the anonymity or eavesdrop an on-
going communication [1, 17, 30]. For example, a malicious exit
node can inject or modify HTMLs, conduct man-in-the-middle
attacks, and modify DNS responses [53]. These techniques, in
turn, can be used to identify the source address of Tor users
or obtain other private information.
Benefits of applying TEE. Utilizing TEEs can enhance the
security of Tor in two ways.
• Attestation of software components: Users can perform

remote attestation to ensure that Tor nodes are running the
unmodified code by verifying the integrity of software. We
believe that this will help users to select Tor nodes, and the
Tor network can benefit from the new trust model.

• Protection against tampered OS: One can also protect Tor
from the malicious operating systems or subverted system
software. In particular, the memory region that Tor is using
can be protected against a malicious OS by running the
critical components of Tor inside an enclave. Even if the OS
is tampered with, the private keys are not exposed to the
attackers. This is especially helpful in protecting directory
servers, as revoking their keys often requires reinstallation
of all Tor nodes [14].
We demonstrate the benefit of our OpenSGX implementa-

tion by porting Tor to OpenSGX. We adopt the second approach
to protect Tor against tampered system software. In particular,
we separate critical parts of Tor that use cryptographic oper-
ations and store all private and session keys inside EPC. For
directory servers, we also store the consensus (i.e., the list of
Tor nodes).
OpenSGX-based Tor design. We take a minimalistic ap-
proach in which we define a narrow interface between generic
Tor code that runs outside the enclave, interacting with the
OS, and Tor-enclave that runs inside OpenSGX. Tor-enclave

contains sensitive data structures to be protected and related
functions that utilize the data structure. Generic Tor code and
Tor-enclave run as separate processes. The generic Tor process
(Tor-non-enclave) invokes RPC to request services that Tor-
enclave provides. In our implementation, we port Tor’s directory
server and exit nodes. Table VIII shows the core data structures
of the directory server and Tor exit node that we protect inside
the enclave. For the case of a directory server, it has two private
keys: an authority identity key and an authority signing key.
Directory authority uses the authority identity key to certify
the authority signing key. The authority signing key is used for
signing and verifying votes and consensus documents, which
are important information for a Tor circuit creation. For an exit
node, a secret identity key is used for signing a router descriptor
and TLS certificate while constructing a 3-hop circuit. Finally,
an exit node uses a secret onion key to decrypt a relay cell
received from the previous onion router.

Table IX summarizes the operation that Tor-enclave and
Tor-non-enclave support. We contain all critical operations
that use private data structures in Tor-enclave and expose an
RPC interface to Tor-non-enclave. Tor-enclave only receives
requests from Tor-non-enclave. We summarize some of the
operations supported by Tor-enclave. First, it supports secure
key generation and stores the keys inside EPC. Also, since
operations such as creating certificates and signatures require
a private key, these modules should be run inside the enclave.
Information related to the private key (e.g fingerprint, digest
and public key string) is also offered by Tor-enclave.

B. Secure I/O path
OpenSGX allows us to extend the platform and develop new

ideas in conjunction with TEE. To demonstrate its flexibility,
we implement a simple secure I/O path that allows secure
communication between the CPU/memory and devices. The
idea has been explored by Intel with its Identity Protection
Technology (IPT) [10], which supports protected transaction
display and audio I/O. However, the development platform is
not widely available to the research community.

While many applications require secure I/O paths [10], to
focus our discussion, we explore this in conjunction with our
main application of the paper, Tor. In particular, Tor’s exit node
can benefit from having a secure network I/O path between Tor-
enclave and the NIC. Tor exit nodes decrypt the packets and can
observe plain-text unless end-to-end encryption is used between
the client using Tor and the server it is communicating with.
This has led to a number of security vulnerabilities in which Tor
exit nodes modify or eavesdrop on the message [53]. A secure
I/O path can protect users from these attacks. In particular, if
the communication channel between the Tor-enclave and the
NIC is secured, (subverted) system software cannot eavesdrop
on or modify the message. Only an attacker that has access
to the network between the Tor exit node and the server can
mount the attacks, but the Tor network has protection against
attacks from inside the Tor network.
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Fig. 5: An overview of the execution environment of an OpenSGX-
enabled Tor. To reduce the size of TCB (an enclave program), we use
SGX to protect the secrecy of Tor nodes; directory in Directory Node
and relay table in Exit Node.

To this end, we emulate the encrypted communication
channel with message authentication. We assume that a shared
secret is established between the Tor-enclave and the secure
network device. We also assume that the device can perform
TCP/IP processing. All the messages between Tor-enclave and
the secure NIC are then sent via the secure channel. Thus,
the operating system of the Tor exit node cannot observe any
plain-text communication between the client and the server.

C. Implementation
We implement Tor-enclave, Tor-non-enclave, and the RPC

interface between the two. For directory servers, Tor-enclave
contains the private key and the list of onion routers to be used,
making the information private. For onion routers, we store
their private keys in Tor-enclave. Non-private information and
external interface to remote parties are handled by Tor-non-
enclave. For evaluation, we use Chutney [48] to construct a
private Tor network. Our private Tor network consists of seven
nodes: three directory servers, three relays (onion routers), and
a client proxy. At minimum, at least three directory servers
are required to prevent tie-breaking, and three relay nodes
are needed to build a 3-hop circuit. The process of running
a private Tor network can be divided into three phases: key
generation, consensus creation, and service phases. During the
key generation phase, private keys and certificates are created
for both onion routers and directory servers. In the consensus
creation phase, directory servers sign votes and create consensus
in order to agree upon the set of relays to be used. Then, a client
proxy requests a list of available onion routers to directory
servers. Based on this, the client proxy establishes a circuit.
Finally, the client proxy sends/receives relay cells using the
circuit for users’ requested service.

VII. PERFORMANCE PROFILING

We evaluate OpenSGX by showcasing the SGX-enabled
Tor application. Using Tor as a case study, we demonstrate that
OpenSGX can run non-trivial applications and enable SGX
application developers to profile their applications using our
performance counter.
Environment setup. Figure 5 illustrates the overall execution
environment of Tor with OpenSGX. Chutney [48] launches
each node as a process within a single machine. Because we
separated enclave components for the Tor directory and Tor
exit node, each directory and exit node runs two processes: a
Tor-non-enclave process and a Tor-enclave process. We use a
Quad core Intel Core i5-4690 3.5GHz CPU machine running
Linux 3.11.0 and tor-0.2.5.10 and torsock-1.3 for evaluation.
To support cryptographic operations (e.g., RSA key creation)

Type Number of pages NoteDirectory node Exit node

Enclave pages 4 4 SECS and TCS
Code/Data pages 366 369 Including library
SSA pages 2 2 Configurable
Stack pages 50 50 Configurable
Heap pages 50 50 Configurable

TABLE X: The number of EPC pages for Tor-enclave process.

Type Directory node Exit node
Code Data Total Code Data Total

OpenSSL 270 88 358 271 89 360
SGX libs 3 1 4 3 1 4
Tor-enclave 3 1 4 4 1 5

Total 276 90 366 278 91 369

TABLE XI: The number of EPC pages for code/data section of
directory and exit Tor nodes.

for Tor-enclave, we statically link and load the OpenSSL 1.0.2
library into the enclave.

We first quantify the number of EPC pages used to run Tor-
enclave. Then, we measure the performance of SGX-enabled
Tor using three metrics: additional instructions and CPU cycles,
the number of context switches between enclave and non-
enclave, and the number of RPC calls between Tor-enclave and
non-enclave.
The number of EPC pages used. Table X shows the
total number of EPC pages required to run Tor-enclave and
their breakdown. We categorize EPC pages into five types:
enclave pages, code/data pages, SSApages, stack, and heap
pages. Enclave pages contain SECS and TCS data structures
required for an enclave. Code and data pages are used for
enclave code/data sections, which are proportional to the size
of the enclave program. SSA pages are State Save Area pages
used to support asynchronous exit. Stack pages are used as
the stack section for the enclave program, and heap pages for
dynamically allocated memory. The number of SSA, stack, and
heap pages is configurable; we initialize them as 2, 50, and 50
pages. However, the number of EPC heap pages can increase
during execution. For example, in a large Tor network, directory
servers may require more heap space because they store the
list of relays in EPC.

For code/data pages, Table XI shows the breakdown of
EPC code and data regions. The page types are categorized by
the OpenSSL library, SGX library, and separated Tor-enclave
program. We see that the OpenSSL library dominates the EPC
usage. This is because we load the entire library into EPC to
support the cryptographic operations needed by Tor. The SGX
library and Tor-enclave consist of five code and data pages
only. Overall, the trusted component is relatively small (54%)
compared to placing the entire Tor code base into the enclave
without the separation.
Additional CPU cycles. We now evaluate the performance
overhead of SGX-enabled Tor by measuring the additional
number of instructions executed and CPU cycles consumed. The
use of SGX instructions executed, SGX library calls, and system
call support, such as enclave creation, contribute to the overhead.
To quantify this, we obtain the number of all instructions
and SGX instructions executed using OpenSGX by leveraging
QEMU and OpenSGX performance counter. We then translate
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Fig. 6: The number of instructions and CPU cycles while loading
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Fig. 7: The number of CPU cycles of Tor-enclave process for the three
phases. Here, separated Tor on QEMU means executing Tor-enclave
process without using SGX instructions and sgxlib calls on the native
QEMU.

the instruction count to CPU cycles using the performance
estimate from recent SGX literature. In particular, we assume
that each SGX instruction takes 10K CPU cycles, and non-
SGX instructions run at native speed within the enclave [5]. To
estimate the CPU cycles for non-SGX instructions, we measure
the average instructions per cycle by executing Tor natively
without OpenSGX.2 We report the average of 20 runs because
the actual instruction count slightly varies depending on the
random number generated during the cryptographic operations,
such as the prime number.

Figure 6 shows the number of CPU cycles consumed to
create and load the program into an enclave. It takes about
361M cycles to start enclave-Tor for a directory node and
362M cycles for an exit node. The CPU cycles required for
loading both directory node and exit node are similar because
the number of EPC pages required for running them are almost
the same (see Table X). During the process, only the privileged
ENCLS instructions are invoked (e.g., ECREATE, EADD, EEXTEND,
and EINIT). Most of them are EEXTEND instruction because it
is called 16 times for each EPC page (4KB) to obtain the hash
value of its content. Additionally, non-SGX instructions are also
invoked for handling the system calls (e.g., sys_sgx_init()).
Note that enclave creation and program loading are one-time
costs that only occur at the beginning.

We now quantify the overhead of key generation, consensus
creation, and service phases of the Tor-enclave process. To
estimate the overhead of using SGX, we compare the number
of instructions and CPU cycles of Tor-enclave running on
OpenSGX and on native QEMU without OpenSGX. Note
that the latter just runs Tor nodes as two separate processes
communicating through a pipe. Thus, the comparison shows
the amount of extra overhead of using SGX. Figure 7 presents
the number of CPU cycles for each phase.

The key generation phase only occurs once at the beginning

2The resulting average IPC is 1.81 instructions/cycle.
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Fig. 8: The number of context switches (enclave exit and entry) of
Tor-enclave process for directory and exit Tor nodes.

to create identity keys and signing keys for directory nodes
and onion keys for exit nodes. Most of CPU cycles in this
phase are used for generating RSA keys. SGX Tor consumes
3.2 times the CPU cycles of the separated Tor running on the
native QEMU without OpenSGX for the directory node, and
3.6 times for the exit node. This is because the key creation
phase uses multiple sgxlib calls, such as sgx_malloc(), that
invoke ENCLS and ENCLU instructions and involve enclave exit
and re-entry.

During the consensus creation phase, directory nodes
perform voting and agree upon the relay and exit nodes to
use. Because consensus creation is performed periodically, we
measure the cost of the first consensus creation. The directory
node consumes 12 times more cycles, while exit node spends
4.9 times more cycles in this phase. For both nodes, sgx_send()
and sgx_recv() calls that are used for sending and receiving
data (e.g., fingerprint, public key string, etc.) consume the extra
CPU cycles because they involve enclave exit and re-entry.
Furthermore, because we have separated the process into Tor-
enclave and non-enclave, the RPC communication between
the two involves sgx_read() and sgx_write() calls that also
contribute to the overhead. Note that this is common across all
three phases because our design puts part of the application
code in the enclave in an attempt to reduce the TCB. Later
in the section, we quantify the number of RPC calls in each
phase.

In the service phase, our client proxy gets the list of Tor
nodes by querying the directory nodes and generates a circuit
from the proxy to an exit node using onion routing. After circuit
establishment, the client’s traffic is directed to the circuit via
the proxy. We measure the overhead of a circuit establishment
and serving a request at the exit node. For the latter, we
generate a single wget request for http://www.google.com.
Figure 7 shows that the directory node consumes 10 times
more cycles and 5.6 times for the exit node. Similar to the
previous case, additional overhead of the directory node is
caused by sgx_send() and sgx_recv() calls to get a consensus
verification result during the circuit creation. For an exit node,
receiving encrypted relay cells from relay nodes requires
sgx_recv() calls that contribute to the overhead.
Context switch overhead. We now quantify the number of
context switches (i.e., enclave entries and exits) that occur
during the Tor-enclave execution. Switching the CPU mode
between enclave and normal mode incurs overhead, including
saving and restoring the CPU state and registers and a
TLB flush. Each invocation of EENTER, EEXIT, and EREUSME
instructions causes the CPU mode to change. Figure 8 shows
the number of context switches of the Tor-enclave process for
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Type Key Consensus Servicegeneration creation

Directory node 14 40 24
Exit Node 74 288 10

Total 88 328 34

TABLE XII: The number of RPC calls between Tor-enclave and
Tor-non-enclave during the three phases of Tor execution

License Concurrency OS support Performance [37]

TPM Variable No Yes Slow
Flicker Dependent on TPM No Yes Fast a

ARM TrustZone ARM Yes Yes Fast
Intel IPT Intel Yes Yes Moderately Fast
Intel SGX Intel Yes Yes Fast
a Flicker TEE code runs on main CPU fast, however it entails significant performance overhead when

utilizing TPM operations [35].

TABLE XIII: Comparison of TEE hardware. ‘Concurrency’ denotes
the case when concurrency is supported by the device and ‘OS
support’ denotes the case when the TEE requires a special OS support.

directory and exit nodes during the three execution phases.
A major source of context switching is system calls and I/O,
such as sys_create_enclave(), sgx_read(), and sgx_write().
In particular, OpenSGX I/O APIs, such as sgx_read() and
sgx_write(), use trampoline and stub, which cause the program
to exit the enclave mode to request I/O operation to the
kernel. Because enclave-Tor performs I/O frequently, the result
shows that context switching occurs very often (i.e., every 7M
instructions for a directory node and 0.5M instructions for
an exit node). However, we expect that the cost of context
switching can be amortized through batching system calls and
I/O operations [44].
The number of RPC calls. Finally, we count the number of
RPC calls between Tor-enclave and Tor-non-enclave. Although
this is not a direct measure, it reflects another aspect of
the overhead due to the new design of Tor (separation of
Tor process). In our implementation, each RPC call involves
sgx_write() or sgx_read() calls. Table XII shows the number
of RPC calls measured for the three phases of Tor execution.
In the key generation phase, an exit node additionally executes
a larger number of RPC calls because it creates three X509
certificates for the TLS connection, whereas the directory node
only creates a certificate for the signing key. Consensus creation
involves a large number of RPC calls. In this phase, a directory
node signs its votes, creates a consensus, and checks the state
of reachable Tor nodes. Then, it sends a message periodically
to Tor nodes and each node replies with liveness information
by authenticating itself using its identity key. This causes many
I/O calls during the launching phase in the exit node. In the
service phase, the directory node requires RPC calls to verify the
signature of consensus. Also, the exit node invokes several RPC
calls for decrypting and encrypting DNS and HTTP requests.
We believe that the cost can be amortized by batching the
systems calls.

VIII. RELATED WORK

TEE has been considered an effective way of constructing
a secure area residing in the main processor in mobile and
smartcard platforms [49]. TEE is designed to ensure protected
storage of sensitive data and to guarantee safe executions of
trusted applications. Although various types of TEE including
TPM, ARM Trusted Zone, Intel TXT, and AMD SVM, have
already been deployed to those platforms [34, 41], their
usage has not reached further into the cloud yet, due to

their limited form factors and, critically, performance. The
recent introduction of Intel SGX [2, 19, 36] changes this
landscape by restricting the TCB (Trusted Computing Base)
to the processor itself while providing the performance at the
native hardware level (e.g., multiple threads support) inside an
enclave. Table XIII summarizes the characteristics of currently
available TEE technologies.
Intel SGX. A number of projects have explored applications
of Intel SGX in the cloud environment. Haven [5] pioneered
the idea of enabling unmodified application binaries to run on
Intel SGX inside the cloud. VC3 [42] suggested using SGX for
ensuring privacy in data analytics in the cloud. Both projects
utilized the Intel SGX emulator provided by Intel to develop
software that works on top of Intel SGX. However, the emulator
has been available only to the authors of both projects. To the
best of our knowledge, no SGX emulator is publicly available
to the general research community. Thus, our focus in this
OpenSGX project is to develop an openly available platform
upon which new research ideas involving TEE can be readily
implemented and explored.

Kim et al. [27] explore how to leverage SGX to enhance the
security and privacy of network applications, such as software-
defined inter-domain routing, Tor anonymity network, and in-
network functions. They use OpenSGX to demonstrate the
feasibility of the design and characterize the overhead of
adopting SGX into application design, which demonstrates
the usefulness of the OpenSGX platform.
Isolated execution environment. Hardware-based trusted
execution environments have been constructed in various
contexts. For example, Flicker [34] utilizes Late Launch;
SICE [4] uses multi-core architecture; OASIS [38] proposes a
cost-effective CPU ISA extensions for TEE; TrInc [31] provides
trustworthy computation by using TPM for distributed systems;
SecureSwitch [46] uses BIOS, and Secure Executables [7, 51]
extends the power architecture to build a trusted execution
environment. For low-end embedded devices, TrustLite [29]
and Tytan [8] enforce execution-aware memory protection in a
flat memory model.

Software-based solutions that utilize hypervisors as TCB
have been explored (e.g., Trustvisor [35], MiniBox [33],
NOVA [45], Overshadow [12], and seL4V [28]). The goal of
these projects is to provide a secure environment. In contrast,
OpenSGX does not provide any security guarantee due to its
emulation nature, but offers a rich platform that enables new
research.
Trusted I/O and remote attestation. Since Intel SGX does
not provide a secure way of communicating with users, an
SGX-compatible solution to establish a secure channel between
a user to the computer (e.g., secure I/O) is required. In this
regard, the integrity of the peripheral’s software is important;
VIPER [32] attempts to verify the integrity of device firmware;
NAVIS [16] enables a similar integrity check to network
adapters; IOCheck [54] provides a framework to enhance the
security of I/O devices; and Intel recently introduced Intel
IPT [10] to establish a secure display and audio channel. These
solutions can be made compatible to Intel SGX in general, and
by using our OpenSGX, one can also explore such an interface
for trusted I/O, similar to our preliminary proof-of-concept
example presented in §VI-B.
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IX. DISCUSSION AND LIMITATIONS

In this section, we summarize the limitations of OpenSGX,
describe our concerns about Intel SGX and its approach in
general, and attempt to clarify prevalent misconceptions about
Intel SGX.
Limitations of OpenSGX. First and foremost, OpenSGX is
not secure for any security-related projects. However, OpenSGX
can be utilized or extended for easy development of Intel
SGX such as toolchains or a library, precise profiling of SGX
programs, and the exploration of potential research opportunities
beyond the software boundary (e.g., hardware semantics or
efficient memory encryption scheme) that the Intel SGX can
not flexibly enable.
Limitations of Intel SGX. Intel SGX is an ideal model for
the cloud, as it has a very restricted set of the I/O channels
(usually just the network and local disk). To use Intel SGX in a
desktop-like, interactive environment, it is essential to establish
a secure channel between users and the enclave program. There
are already a few commodity hardware available on the market:
Intel Protected Audio and Video (Intel PAVP) [20] and Intel
Identity Protection Technology (Intel IPT) [10]. Although both
technologies can be used for creating an encrypted I/O path of
video and audio to an enclave program [19, 20], their usage
seems restricted to mobile devices that accept a user’s inputs
through a touch-screen interface. However, integration into
typical input devices such as a keyboard or mouse still needs
to be solved for wide adoption of Intel SGX.

Rutkowska [39] raises a similar concern that even if SGX
succeeds in preventing malware from stealing critical user data
directly from memory, the absence of a secure input and output
can allow malware to potentially command the enclave to leak
them.

Another misconception of Intel SGX is that its trust (i.e.,
remote attestation) can be constructed without any future
reliance on Intel once an SGX-enabled device is deployed.
However, to properly perform a remote attestation, the report
certified by the quoting enclave should be checked for an
EPID infrastructure provided by Intel (e.g., checking identity
or revocation) [9].
Malicious use of Intel SGX. As recently highlighted in detail
by a handful of researchers [13, 40], we have similar concerns
in terms of safe use of Intel SGX; for example, irreversible
malware might be possible by abusing the isolation property, so
unanalyzable, guaranteed by the hardware. Worse yet, end-users
or anti-virus software will not be able to distinguish from a
compromised instance of OpenSGX and its normal run.

More specifically, we describe a few concrete scenarios
showcasing how an enclave program can be abused once
compromised (or after a private key is leaked). First, a
botnet creator can establish a completely hidden or obfuscated
communication channel between its operator by busing the
remote attestation [13]; once malware runs inside the enclave,
the operation initiates actual commands.

Second, the isolation will make traditional, popular
signature-based anti-virus programs futile; one potential direc-
tion is to estimate the correct or expected behavior of enclave
programs, but we believe these directions are ad-hoc, (i.e., not
sound) and results in huge false positives in practice.

Finally, another concern, similarly raised by Joanna
Rutkowska [39, 40], is that the use of SGX tends to make

end-users rely too strongly on Intel. Except for the fact that
Intel can launch an enclave without a platform-specific key, our
reliance on the SGX might result in a single point of security
failure; Intel can introduce a CPU backdoor by disclosing the
private key without any hardware tempering or incorporating
suspicious components.

X. CONCLUSION

Due to the wide adoption of the x86 architecture, its Soft-
ware Guard Extensions (SGX) for trusted execution potentially
has a tremendous impact on software security, enabling a wide
range of applications to enhance their security and privacy
properties. At the same time, the limitations of SGX need
to be closely evaluated due to the possibility of new forms
of attacks potentially surfacing. Unfortunately, the absence
of an open platform for research, such as SGX hardware or
an emulator, has been a significant barrier to exploring the
promises and potential issues of SGX. The remarkable interest
we have received from the security community during the early
phase of development reflects that there is a strong demand for
an open platform for SGX research.

To tackle the problem, we propose OpenSGX, a fully
functional open source emulator for Intel SGX. In the process,
we have developed a complete platform for SGX develop-
ment that includes emulated hardware and operating system
components, an enclave program loader, an OpenSGX user
library, and debugging and performance monitoring support.
Our evaluation of OpenSGX demonstrates that it can run non-
trivial applications, such as the Tor anonymity network, and new
ideas can be easily implemented and evaluated as a proof-of-
concept using our framework. Finally, we believe that significant
research opportunities exist in applying new ideas to each and
every component of OpenSGX. We plan to make OpenSGX
publicly available as open source and hope that OpenSGX
serves as a vehicle for implementing new ideas in trusted
execution environments.
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