
FCP: A Flexible Transport Framework
for Accommodating Diversity

Dongsu Han Robert Grandl† Aditya Akella† Srinivasan Seshan∗
KAIST University of Wisconsin-Madison† Carnegie Mellon University∗

{dongsuh,srini}@cs.cmu.edu, {rgrandl,akella}@cs.wisc.edu

ABSTRACT
Transport protocols must accommodate diverse application and net-
work requirements. As a result, TCP has evolved over time with
new congestion control algorithms such as support for generalized
AIMD, background flows, and multipath. On the other hand, explicit
congestion control algorithms have been shown to be more efficient.
However, they are inherently more rigid because they rely on in-
network components. Therefore, it is not clear whether they can be
made flexible enough to support diverse application requirements.
This paper presents a flexible framework for network resource al-
location, called FCP, that accommodates diversity by exposing a
simple abstraction for resource allocation. FCP incorporates novel
primitives for end-point flexibility (aggregation and preloading) into
a single framework and makes economics-based congestion control
practical by explicitly handling load variations and by decoupling
it from actual billing. We show that FCP allows evolution by ac-
commodating diversity and ensuring coexistence, while being as
efficient as existing explicit congestion control algorithms.

Categories and Subject Descriptors
C.2.2 [COMPUTER-COMMUNICATION NETWORKS]: Net-
work Protocols; C.2.5 [COMPUTER-COMMUNICATION NET-
WORKS]: Local and Wide-Area Networks—Internet

Keywords
Transport protocol; congestion control; end-point flexibility

1. INTRODUCTION
Networked applications require a wide range of communication

features, such as reliability, flow control, and in-order delivery to
operate effectively. Since the Internet provides only a very simple,
best-effort, datagram-based communication interface, we have re-
lied on transport protocols to play the key role of implementing
the application’s desired functionality. As application needs and
workloads have changed and diversified, transport protocols have
adapted to provided diverse functionality to meet their needs. In
general, changes to transport protocols, such as adding better loss

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMMâĂŹ13, August 12–16, 2013, Hong Kong, China.
Copyright 20XX ACM 978-1-4503-2056-6/13/08 ...$15.00.

recovery mechanisms, have been relatively simple since they only
require unilateral changes at the endpoints.

However, among the functions that transport protocols implement,
congestion control is unique since it concerns resource allocation,
which requires coordination among all participants to ensure high
link utilization and fairness. For example, two very different styles
of congestion control (e.g., TCP and RCP [16] or D3 [49]) can-
not coexist as they interfere with each other’s resource allocation.
Nevertheless, today’s applications impose increasingly diverse re-
quirements for resource allocation such as utilizing multipath [50],
supporting deadlines [49], and optimizing for non-traditional met-
rics including quality of user experience [3].

The key requirements for supporting diversity in congestion con-
trol are 1) the flexibility to handle new requirements and 2) ensuring
coexistence between different behaviors without negative impact
on efficiency and fairness. Fortunately, TCP-style congestion con-
trol has been able to support a wide range of congestion control
techniques to meet different application requirements; these in-
clude support for: streaming applications that require bandwidth
guarantees [7, 17] or low-latency recovery [23, 32], non-interactive
applications that can leverage low-priority, background transfer [48],
applications that require multi-path communication [50] for robust-
ness, and Bittorrent-like content distribution that transfers objects
from multiple sources.

Two key aspects of TCP’s congestion control enable diversity:
1) its purely end-point based nature enables each end-point the
flexibility to employ different algorithms and 2) the notion of TCP-
friendliness [17] provides a mechanism for coexistence between
different algorithms and behaviors.

However, router-assisted explicit congestion control, such as RCP
and XCP, is far more efficient than TCP, achieving high utilization,
small delays, and faster flow completion time [16, 25, 49]. Recently,
D3, a customized explicit congestion control algorithm for data-
centers, has been shown to significantly outperform TCP [49]. On
the other hand, router-assisted congestion control algorithms are
far less flexible because the network’s feedback strictly defines end-
point behaviors. In fact, the two properties of TCP that enable
diversity do not hold in router-assisted congestion control.

Since router-assisted congestion control does not provide flexibil-
ity and end-point based algorithms do not provide high efficiency,
achieving high efficiency and supporting diversity appear to be at
odds. Contrary to this belief, this paper shows that we can have the
best of both worlds. Herein, we present the design of FCP (Flexible
Control Protocol), a novel congestion control framework that is as
efficient as explicit congestion control algorithms (e.g., RCP and
XCP), but retains (or even expands) the flexibility of an end-point
based congestion control.

Our primary contribution is showing that explicit congestion con-
trol algorithms can be made as flexible as end-point based algo-
rithms. To achieve this, FCP incorporates two key ideas:

1. To maximize end-point flexibility without sacrificing effi-
ciency, FCP effectively combines fine-grained end-point con-
trol and explicit router feedback. To our knowledge, FCP is
the first congestion control algorithm that incorporates the
two.

2. To ensure safe coexistence of different behaviors within the
same network, FCP introduces a simple invariant for fairness.

To enable flexible resource allocation, we leverage and extend
ideas from economic-based congestion control [26, 28]. In particu-
lar, we allow each domain to allocate resources (budget) to a host
and make networks explicitly signal the congestion price. Such
aggregation enables end-points to freely assign their own resources
to their flows and allows the network to assign different pricing
schemes to different classes of flows for extra functionality. To
ensure safe coexistence of different end-point resource allocation
strategies, the system maintains a key invariant that the amount of
traffic a sender can generate is limited by its budget, which is the
maximum amount it can spend per unit time.

However, numerous practical challenges exist in generating ex-
plicit price feedback, while allowing the end-points to dynamically
change their flows’ budget allocation. In particular, existing explicit
congestion control algorithms exhibit undesirable behaviors during
transient periods. For example, XCP results in unfair bandwidth al-
location [16], and RCP can significantly overload the network under
rapid variations in load. Furthermore, the notion of a flow does not
fit well with the request/response-like, short, bursty workloads of
many applications.

To design a more practical and robust system, FCP further im-
proves upon past designs in two critical ways:
1. Unlike other router-assisted designs [16, 25, 28], FCP accom-

modates high variability and rapid shifts in workload, which is
critical for the flexibility and performance. This property comes
from our preloading feature that allows senders to commit the
amount of resources they want to spend ahead of time. Preload-
ing generalizes the step-change algorithm in [27], making FCP
end-points a more active component in congestion control that
explicitly handles short, bursty workloads.

2. We address practical issues in system design and resource man-
agement, such as dealing with relative pricing. FCP provides a
practical mechanism for cost-fairness [10] that is decoupled from
actual billing, unlike other approaches [10, 26], while enforcing
that each sender operates within its own budget.
Our in-depth evaluation based on simulations and real implemen-

tation shows that FCP is locally stable, achieves faster and graceful
convergence, and outperforms existing explicit congestion control
algorithms in many cases, without imposing unreasonable overhead.
FCP’s end-point flexibility and coexistence mechanisms allow end-
points to easily implement diverse strategies, benefiting many types
of applications. Furthermore, the pricing abstraction coupled with
preloading allows FCP to add support for new service models and
various quality-of-service features.

In the rest of the paper, we discuss our motivation and related
work (§2), present our design (§3), and discuss practical issues
in deployment (§4). We then evaluate FCP (§5), describe budget
management issues (§6), and conclude in §7.

2. MOTIVATION AND RELATED WORK
This section presents the key requirements (§2.1), related work

(§2.2) and principles of FCP design (§2.3).

2.1 Diversity and Flexibility
The congestion control algorithm must accommodate diversity

such that different strategies can coexist and permit flexibility to
ensure that new behaviors can be implemented to accommodate
potential changes in communication patterns.

Diversity: To understand the nature of diversity in resource allo-
cation, we categorize previous work into four categories:

1. Local resource allocation: Prior work, such as congestion man-
ager [5], SCTP [37], and SST [19], has shown the benefits of
sharing bandwidth across (sub-) flows that share a common path.

2. Allocating resources within a network: Support for differential
or weighted bandwidth allocation across different flows has been
explored in generalized AIMD [6, 51], MulTCP [13, 14], and
TCP Nice [48].

3. Network-wide resource allocation: Bandwidth is sometimes allo-
cated on aggregate flows or sub-flows. Multipath TCP (MPTCP) [50]
controls the total amount of bandwidth allocated to its sub-flows.
Distributed rate limiting [41] and assured forwarding in DiffServ
control resource allocation to a group of flows. In such systems,
flows that do not traverse the same path are allocated shared re-
sources (e.g., MPTCP is fair to regular TCP at shared bottlenecks).
Thus, one can be more aggressive in some parts of the network at
the expense of being less aggressive in other parts [41].

4. Bandwidth stability: Although strict performance guarantees re-
quire in-network support, transport protocols try to provide some
level of performance guarantees. TFRC [17] provides slowly
changing rates, and OverQoS [46] provides probabilistic perfor-
mance guarantees.
Flexibility: Congestion control must be flexible enough to intro-

duce new behaviors to handle new requirements. TCP’s flexibility
enables new algorithms and implementations to be introduced over
time at the end-points as well as active queue management in the net-
work. This is increasingly important because future networks might
support new types of service models [24], and application devel-
opers desire to optimize for new application-specific metrics, such
as the fraction of flows meeting a deadline [49] and quality of user
experience [3]. To ensure flexibility, FCP must expose sufficient
control to the end-host as well as to the network. In addition, a scal-
able mechanism is needed in order to exert control over aggregate
flows without per-flow state at the router.

Note that apart from these requirements for evolution, there are
also traditional requirements, such as high efficiency, fast conver-
gence, and fair bandwidth allocation. TCP Cubic [22], XCP [25],
CSFQ [45], and many others [16, 18] fall into this category. Our
goal is to design a flexible congestion control framework that ac-
commodates diversity and allows flexibility in resource allocation,
while meeting these traditional requirements.

2.2 Related Work
Our framework builds upon concepts from many previous designs

to provide a more general framework for resource allocation.
Economics-driven resource allocation has been explored from

the early days of the Internet [12, 38, 42]. MacKie-Mason and Var-
ian [35] proposed a smart market approach for allocating bandwidth.
Since then many have tried to combine this approach with con-
gestion control, which led to the development of economics-based
congestion control [11, 28, 34] and network utility maximization
(NUM) [52].

Kelly [28] proved that in a system where users choose to pay the
charge per unit time, the transfer rate could be determined such that
the total utility of the system is maximized at equilibrium, and the
rate assignment satisfies the weighted proportional fairness criterion.
Two classes of algorithms can achieve such rate allocation [28]:

1) In algorithms that correspond to the primal form of the utility
maximization problem, the network implicitly signals the congestion
price, and the senders use additive increase/multiplicative decrease
rules to control rate. 2) In the dual algorithm, the network uses
explicit rate feedback based on shadow prices.

The primal algorithms [2, 11, 13, 30, 33, 36] use end-point based
congestion control. Gibbens and Kelly [21] show how marking
packets (with an ECN bit) and charging the user the amount pro-
portional to the number of marked packets achieves the same goal,
and allows evolution of end-point based congestion control algo-
rithms. Re-ECN [11] shows how end-users can avoid variable and
unpredictable congestion charging by purchasing fixed congestion
quotas, while using economics-based congestion control on top
of TCP. Many congestion control and active queue management
schemes [30, 33, 36], such as REM [2], have also been developed
to achieve Kelly’s (weighted) proportional fairness. However, they
abandon the notion of actual congestion charging, but resort to
(weighted) flow rate fairness. The dual algorithm uses rate (or price)
as an explicit feedback and was materialized by Kelly et al. [27] by
extending RCP [16]1.

However, the flow rate fairness used by the above algorithms is
far from ideal [10, 11, 40]. Just as in TCP, one can obtain more band-
width just by initiating more flows, a concern in many environments
including recent cloud computing [40]. Similar to re-ECN [11],
FCP departs from flow rate fairness, but assigns the resources to
a group of flows (e.g., flows that originate from a single host) and
achieves weighted proportional fairness. However, unlike re-ECN,
where users have to purchase a congestion quota, FCP completely
decouples the real-world billing from congestion pricing and handles
practical problems that arise from it. Furthermore, FCP’s preloading
allows the end-point to play an active role in congestion control,
and naturally supports bursty workloads, flow departure and arrival
(§5.1), flexibility at the end-point in resource allocation (§5.3), and
quality of service features in the network (§5.4).

Extensible transport: Others focus on designing an extensi-
ble [9, 39] or configurable [8] transport protocol, either focusing on
security aspects of installing mobile code at the end-host or taking
software engineering approaches to modularize transport functional-
ity at compile time. However, the core mechanism for coexistence
is TCP-friendliness.

Virtualization: Finally, virtualization [1, 43] partitions a physi-
cal network, allowing completely different congestion control algo-
rithms to operate within each virtualized network. However, slicing
bandwidth creates fragments and reduces the degree of statistical
multiplexing, which we rely on for resource provisioning. Also, this
increases the complexity of applications and end-hosts that want to
use multiple protocols simultaneously as they have to participate in
multiple slices and maintain multiple networking stacks.

2.3 Principles of Design
FCP employs two key principles for accommodating diversity

and ensuring flexibility: aggregation and local control. We explain
them in detail and show that it requires a careful feedback design in
order to achieve both properties.

Aggregation: FCP assigns resources to a group of flows. Aggre-
gation allows the network to control the amount of resources that
the group is consuming in a distributed and scalable fashion while
preserving the relative weight of the individual flows within the
group. FCP ensures that, regardless of the strategy that an end-point
might use, its aggregate resource consumption is proportional to its
budget. This is critical for the coexistence of different end-point
1Prior to this, Low and Lapsley’s preliminary design [33] also in-
corporates explicit price feedback.

behaviors as it provides fairness. Aggregation also simplifies con-
trol and enforcement; the network can enforce the constraint that
a host generates traffic within its allocated resources without the
routers having to maintain per-flow state. For additional flexibility,
we allow aggregation at various levels. ISPs can also aggregate
traffic coming from another ISP and apportion their own resources
(§6). For example, each domain can independently assign weights
to neighboring domains’ traffic or to a group of flows.

Local control: In FCP, both the end-host and the network have
local control; the network controls the allocation of bandwidth on
aggregate flows, and end-hosts decide how to use their own resources
(budget) given the network constraint. However, explicit congestion
control algorithms, such as XCP and RCP, leaves no local control
at the end-point because their rate feedback strictly defines the end-
point’s behavior. In contrast, FCP’s local control gives end-points
control and freedom in using their own resources, making them an
active component. In FCP, it is the responsibility of the end-point
to decide how it distributes its own resources locally amongst its
own flows (diversity category 1 in §2.1). The network then assigns
bandwidth proportional to the flow’s assigned resources (category 2).
A host can also spend more resources on some flows while spending
less on others (category 3). Various entities in the network may
also control how their own resources are shared between groups
of flows. For example, networks can allocate bandwidth in a more
stable manner to certain groups of flows (category 4).

Designing the form of network-to-end-point feedback that meets
both of these requirements is challenging. Providing explicit rate
feedback leaves little flexibility at the end-point; however, using
an abstract or implicit feedback mechanism, such as loss rate or
latency, or loosely defining the semantics of feedback, allows a
broader range of end-host behaviors. However, using such feedback
typically involves guesswork. As a result, end-hosts must probe for
bandwidth, sacrificing performance and increasing the convergence
time (e.g., in a large bandwidth-delay product link). Providing dif-
ferential feedback for differential bandwidth allocation is also hard
in this context. As a result, differential bandwidth allocation typi-
cally is done by carefully controlling how aggressively end-points
respond to feedback relative to each other [51]. This also makes
enforcement and resource allocation on aggregate flows very hard.
For example, for enforcement, the network has to independently
measure the implicit feedback that an end-point is receiving and
correlate it with the end-point’s sending rate.

We take a different approach by leveraging ideas from economics-
based congestion control [21, 28]. Using pricing as a form of
explicit feedback, we design a flexible explicit congestion control
algorithm that supports aggregation and local control.

3. DESIGN
We now sketch our high-level design in steps.

(1) Each sender (host) is assigned a budget ($/sec), the maximum
amount it can spend per unit time. The budget defines the weight of
a sender, but is different from the notion of “willingness to pay” in
[28] in that it does not have a real monetary value. We first focus
on how FCP works when the budget is assigned by a centralized
entity. Later, in §6, we extend FCP to support distributed budget
management in which each domain assigns budgets completely
independently and may not trust each other.
(2) At the start of a flow, a sender allocates part of its budget to
the flow. This per-flow budget determines the weight of the flow.
The budget controller in the operating system dynamically assigns
budget to flows taking into account traffic demand and application
objectives. The end-point flexibility is enabled at this stage because

Flow 1

Budget W
($/sec)

Flow i’s price: Pi ($/bit)

Sender Receiver Network

...

Flow 2

Flow n Flow i’s budget:
 wi subject to W ≥ Σwi
Flow i’s rate:
 Ri = budget/price = wi /Pi

Figure 1: Design Overview

Budget ($/sec)

Sender Receiver
Network

PRICE DATA

PRICE ACK

(Echoes back price info)

(Determines price)

(Pays price to send)

Figure 2: Network generates the price feedback.

the sender can implement various strategies of resource allocation,
as illustrated in §3.2.

Figure 1 illustrates the budget assignment across flows. The
sender has a budget of W , and can distribute its budget to its flows as
it pleases provided that the sum of the flows’ budgets, ∑wi, is less
than or equal to W . The rate of flow i, Ri, is then defined as wi/Pi
where Pi is the price for the path flow i is traversing. This allows
the end-host to control its own resources and achieve differential
bandwidth allocation on a flow-by-flow basis. Next, we show how
the path price is generated.
(3) The network determines the congestion price ($/bit) of each
link. In FCP, the sender learns the path price in the form of explicit
feedback. Similar to [28], the price of path r, Pr, is defined as the
sum of link prices: Pr = ∑

l∈r
pl , where pl is the price of link l in path

r. To ensure efficiency, the price adapts to the amount of budget
(traffic times its price) flowing through the system. In §3.1, we first
show a uniform pricing scheme in which all packets see the same
price. Later in §3.2, we show how networks can employ differential
pricing and aggregate congestion control to support various features
such as quality of service and multicast congestion control.
(4) The flow must ramp up to its fair-share, Ri, by actually using its
budget wi. Two problems arise at this stage: At the start of the flow
the sender does not know the path price, Pi. More importantly, the
network does not know the budget amount (wi) it should expect. This
leads to serious problems especially when the load changes rapidly.
For example, when a path is not congested, its congestion price
will be an infinitesimal value, ε . Any wi >> ε will set the sending
rate to an infinite value, and overload the network significantly. To
address this problem, we introduce preloading, a distinct feature
of our design that allows a host to rapidly increase or decrease a
flow’s budget. Preloading allows a sender to specify the amount
of budget increase for the next round in multiples of the current
price, allowing the network to adjust the expected input budget and
generate the price based on this. The challenge here is to make hosts
and routers update the budget wi and the price Pi in a coordinated
fashion so that the host generates traffic up to its budget only when
the network is expecting this. This is especially challenging because
the system is asynchronous and feedback is delayed. To achieve this
in FCP, routers update the price on every packet reception, and hosts
preload on a packet-by-packet basis when the flow initially ramps
up or the budget assignment changes.

The sender ramps up in two steps using preloading:

(4-a) In the first packet, we specify (preload) how much we want to
send in the next RTT. However, at this point we do not yet know the
path price. Therefore, we preload a conservative amount. (See §3.1
for details.)
(4-b) After the price is discovered, the sender can preload the appro-
priate amount for using up the budget assigned to the flow. Preload-
ing is also used when an active flow’s budget assignment changes.

3.1 Flexible Control Framework
We now describe the algorithm in detail. In FCP, the system

maintains the following invariant: For all hosts h,

∑
s∈Packets

price(s) · size(s)≤Wh (1)

where Packets is the set of packets sent by host h during unit time,
price(s) is the most recent price of the path that packet s is sent
through, and Wh is host h’s budget.

Explicit price feedback: To satisfy the invariant, senders have to
know the path price. As Figure 2 illustrates, an FCP header contains
a price value, which accumulates the path price in the forward path
and gets echoed back to the sender. Each router on the path updates
the price in the header as: price = price+ pl , where pl is the egress
link price.

Pricing ensures network efficiency by dynamically adapting the
price to the amount of incoming budget. We first show how each
router calculates the link price without considering the preloading.
Each link’s price must reflect the amount of incoming budget and
the capacity of the link. Upon receiving packet s at time t, each
router calculates the link price per bit p(t) ($/bit) as:

p(t) =
I(t)

C−αq(t)/d
(2)

I(t) =

∑
s∈(t−d,t]

p(t− rtt(s)) · size(s)

d
(3)

Equation 2 sets the price as the incoming budget (amount of traffic
times its price) over remaining link capacity. The numerator, I(t),
denotes the total incoming budget per unit time ($/sec), which is
the sum of all packets’ prices ($) seen during the averaging window
interval (t-d,t]. The denominator reflects the remaining link capacity,
where C is the link-capacity, q(t) is the instantaneous queue size,
α is a constant, and d is the averaging window. rtt(s) is the RTT
of the packet s, and p(t − rtt(s)) is the past feedback price per
bit. Unlike other explicit congestion control protocols [16, 25], the
router calculates the link price at every packet reception, and keeps
the time series p(·). We set d as multiples of average RTT (2 to 3
times the average RTT in our implementation).

Equation 2 deals with efficiency control by quickly adapting
the price based on the incoming budget and the remaining link
capacity. Fairness is achieved because everyone sees the same price.
Therefore the bandwidth allocation is proportional to budget. In
§5.1, we demonstrate the local stability of this algorithm by testing
it under random perturbations.

Equation 3 estimates the amount of incoming budget that a router
is going to see in the future using recent history. When the in-
coming budget, I(t), is relatively constant over time the price is
stable. However, when the input budget constantly changes by a
large amount (e.g., due to flow departures and arrivals or budget
assignment changes), the price will also fluctuate. This, coupled
with the inherent delayed feedback, can leave the system in an un-
desirable state for an extended period. During convergence, the
network may see high loss rate, under-utilization, or unfairness, a

common problem for explicit congestion control algorithms [16] as
we show in §5.1.

This problem has been regarded as being acceptable in other
systems because changes in load are viewed as either temporary or
incremental [31]. However, this is not the case in our system. One
of the key enablers of evolution in FCP is the end-host’s ability to
arbitrarily assign its budget to individual flows, and we expect that
rapid change in the input budget will be the norm. Increasing budget
rapidly also allows senders to quickly ramp up their sending rates
to their fair-share. However, this is especially problematic when
the amount of budget can vary by large amounts between flows.
For example, consider a scenario where a link has a flow whose
budget is 1$/sec. When the flow changes the budget assignment
to 1000 $/sec instantly, this link will see 1000x the current load.
However, preventing this behavior and forcing users to incrementally
introduce budget will make convergence significantly slower and
limit the flexibility.

Preloading allows a host to rapidly increase or decrease the
budget amount per flow on a packet-by-packet basis without such
problems. It provides a mechanism for the sender to specify the
amount of budget it intends to introduce in the next round, allowing
the network to adjust the expected input budget and generate prices
based on the commitment.

However, the sender cannot just specify the absolute budget
amount that it wants to use because the path price is a sum of
link prices and routers do not keep track of the path price, but only
the local link’s price. Instead, we let senders preload in multiples
of the current price. For example, if the sender wants to introduce
10 times more budget in the next round, it specifies the preload
value of 10. For routers to take this preload into account, we update
Equation 3 as follows:

I(t) =

∑
s∈(t−d,t]

p(·) size(s) (1+ preload(s) ·d/rtt(s))

d
(4)

The additional preload term takes account for the expected in-
crease in the incoming budget, and rtt(s) accounts for the difference
between the flow’s RTT and the averaging window. Preloading
provides a hint for routers to accurately account for rapid changes
in the input budget. Using the preload feature, FCP handles flow
arrival, departure, and short flows explicitly, and thus significantly
speeds up convergence and reduces estimation errors.

Header: We now describe the full header format. An FCP data
packet contains the following congestion header:

RTT price preload balance

When the sender initializes the header, RTT field is set to the current
RTT of the flow, price is set to 0, and preload to the desired value
(refer to sender behavior below). The balance field is set as the last
feedback price—i.e., the price that the sender is paying to send the
packet. This is used for congestion control enforcement (§4). Price
and preload value are echoed back by an acknowledgement.

Sender behavior with preloading: Senders can adjust the allo-
cation of budget to their flows at any time. Let xi be the new target
budget of flow i, and wi the current budget whose unit is $/sec.
When sending a packet, it preloads by (xi−wi)/wi, the relative
difference in budget. When an ACK for data packet s is received,
both the current budget and the sending rate are updated according
to the feedback. When preload value is non-zero, the current budget
is updated as:

wi = wi + paid · size(s) · preload/rtt

where paid is the price of packet p in the previous RTT. The sending
rate ri is updated as: ri = wi/pi, where pi is the price feedback in

the ACK packet. Note that preloading occurs on a packet-by-packet
basis and the sender only updates the budget after it receives the new
price that accounts for its new budget commitment. Also note that
the preload can be negative. For example, a flow preloads -1 when
it is terminating. Negative preloading allows the network to quickly
respond to decreasing budget influx, and is useful when there are
many flows that arrive and leave. Without the negative preload, it
takes an average window (d) for the budget of an already departed
flow to completely decay in the system.

Start-up behavior: We now describe how FCP works from the
start of a flow. We assume a TCP-like 3-way handshake. Along
with a SYN packet, we preload how much we want to send in the
next RTT. However, because we do not yet know the path price,
we do not aggressively preload. In our implementation of FCP, we
adjust the preload so that we can send 10 packets per RTT after
receiving a SYN/ACK. The SYN/ACK contains the price. Upon
receiving it, we initialize the budget assigned to this flow wi as:
price · size · preload/rtt. The sender then adjusts its flows’ budget
as described earlier.

3.2 Supporting Diversity
First, we illustrate the type of flexibility FCP enables at the end-

points. FCP’s local control and aggregation allow flexibility similar
to that of end-point based algorithms in that they give end-points sig-
nificant control over how the resources are allocated. Furthermore,
preloading enables dynamic resource allocation at the packet-level.
Next, we show that FCP also provides significant flexibility in the
network with differential feedback.

End-point flexibility: FCP allows end-points to focus on their
own optimization objectives and resource allocation strategies with-
out being concerned about the network-wide objectives, such as effi-
ciency and fairness. It truly decouples the two, enabling end-points
to employ intelligent strategies and improve their implementation
over time. Below, we outline several strategies as examples.
• Equal budget achieves flow rate fairness within a single host

by equally partitioning the budget between its flows (e.g., when
there are n flows, each flow gets budget/n). The throughput of
flows within a single host will be purely determined by the path’s
congestion level.
• Equal throughput: An end-point may want to achieve equal

sending rates to all communicating parties (e.g., in a conference
call). This can be achieved by carefully assigning more budget to
more expensive flows.
• Max throughput tries to maximize the total throughput given

the total budget by allocating more budget towards inexpensive
paths (less congested) and using less on congested paths. This
generalizes the approach used in multipath TCP [50] even to
flows sent to different destinations.
• FCP also supports background flows [48] that only utilize “spare

network capacity”. When foreground flows take up all the ca-
pacity, background flows must transmit at a minimal rate. This
can be achieved by assigning a minimal budget to background
flows. When links are not fully utilized, the price goes down to
“zero” and path price becomes marginal. Therefore, with only a
marginal budget, background flows can fill up the capacity.
• Statistical bandwidth stability: Flows that require a stable through-

put [17] can be supported by reallocating budget between flows;
if the flow’s path price increases (decreases), we increase (de-
crease) its budget. When the budget needs to increase, the flow
steals budget from normal flows. This is slightly different from
the smooth bandwidth allocation of TFRC [17] in that temporary
variation is allowed, but the average throughput over a few RTTs
is probabilistically stable. The probability depends on how much

budget can be stolen and the degree of path price variation. Such
a statistical guarantee is similar to that of OverQoS [46].
Note this list is not exhaustive, and FCP’s flexibility allows end-

hosts to optimize a variety of metrics. Servers in CDNs may employ
a resource allocation strategy to maximize the quality of user expe-
rience [3], which affects users engagement [15]. Furthermore, these
algorithms are not mutually exclusive. Different hosts or different
groups of flows within a single host can use different strategies.
Coexistence is guaranteed because end-hosts stick to the fairness
invariant of Equation 1. Thus, FCP facilitates the design and deploy-
ment of heterogeneous behaviors in resource allocation.

Network and end-point flexibility: End-points and networks
can also simultaneously evolve to achieve a common goal. FCP’s lo-
cal control and aggregation allow routers to give differential pricing.
Preloading also allows dynamic resource allocation. We show how
one might use them to provide extra functionality. In our examples
below, the algorithm changes from FCP’s original design, including
the path price calculation, link price generation, and preloading
strategy. However, the invariant of Equation 1 remains unchanged.

• FCP can support a stricter form of bandwidth stability with
differential pricing and end-point cooperation by bounding the
price variability for bandwidth stability flows. For stability flows,
end-points can only double the flow’s budget which limits the
speed at which the rate can ramp up. Routers have two queues per
link: stability and normal. The stability queue’s price variation
is bounded by a factor of two, during the time window d (e.g.,
twice the average RTT). When the price has to go up more than
that amount, it steals bandwidth from the normal queue to bound
the price increase of the stability queue. As a result, the normal
queue’s price increase even more, but the bandwidth stability
queue’s price is bounded. When the price might go down by
a factor of two during a window, it assigns less bandwidth to
the stability queue. At steady state, the prices of both queues
converge to the same value.

• FCP’s flexibility allows the network to support a different service
model. For example, FCP can support multicast congestion
control. The price of a multicast packet is the sum of the price of
all links that it traverses. We sum up the price of a packet in the
following recursive manner to account for each link price only
once in a multicast tree: When a router receives a multicast packet,
it remembers its upstream link price, resets the price feedback to
zero, and sends out a copy of the packet to each of its outgoing
interfaces in the multicast tree. Receivers echo back the price
information. Upon receiving an ACK, each router remembers the
price of its subtrees and sends a new ACK containing a new price
for its upstream router. This new price is the sum of all the price
feedback from its subtrees and the uplink price that it previously
remembered.

• FCP can also support Paris Metro Pricing (PMP)-like [38] differ-
ential pricing. The network can assign higher price to a priority
service in multiples of the standard price. For example, the pri-
ority queue’s price can be 10 times the standard queue. The
end-host will only use the priority queue when it is worth it and
necessary, making the priority queue see much less traffic that the
standard one.

• FCP can implement D3[49]-style deadline support using differ-
ential pricing with two queues per link: a deadline queue and a
best effort queue. The deadline queue always gives a small agreed-
upon fixed price. Flows indicate their desired rate by preloading.
The router gives the fixed price only when the desired rate can
be satisfied. Otherwise, it puts the packet into the best-effort
queue and gives a normal price to match the aggregate rate to the
normal queue’s bandwidth. A deadline flow first tries deadline

support, but falls back to best effort service when it receives a
price different from the fixed value after preloading (See §5.4 for
details).

4. PRACTICAL ISSUES
Section 3 addressed the first order design issues. We now address

remaining issues in implementation and deployment.
Minimum price: In economics-based congestion control [27],

the price per unit charge goes to zero when the willingness to pay,
w, is an infinitesimal value or the link is constantly under-utilized.
In RCP, this means that the rate feedback can be an infinitely large
value. When this happens, the convergence behavior of a new flow
is far from ideal. 2 To address this problem, we define a globally
agreed upon minimum price and treat this value as zero (e.g., for
any price P, P = P+MININUM). Therefore, an uncongested path
has the minimum price. However, defining a minimum price has
two implications in budget assignment: 1) For a host with a unit
budget to saturate a path, this minimum price must be smaller than
unit budget over the maximum link capacity. 2) To differentiate
background flows from normal flows, normal flows must have far
more budget. Thus, we make the minimum price sufficiently low
(10−18$/byte), ensuring a flow to saturate $1/Exabyte given a unit
budget, while giving a sufficient range for background flows.

Enforcement: FCP’s explicit price feedback allows the network
to perform enforcement without per-flow state (but with per-user
state at the edge router). We leave the exact mechanisms as future
work, but briefly describe the high-level approach. The network can
enforce 1) whether the sender is paying the right amount, 2) whether
the sender is operating within its budget, and 3) the sender is not
misbehaving. To enforce 1), we use the enforcement mechanism
in Re-feedback [11]. The sender sets the balance field to the
amount it is paying, and every router along the path subtracts the
link price for this packet, p(t−rtt). If the amount reaches a negative
value, this means that the sender did not pay enough. The egress
edge router maintains an average of the balance value. If the value
is consistently below zero, the egress router computes the average
balance for each sender and identifies who is consistently paying
less, and drops its packet. This information is then propagated
upstream to drop packets near the source. Details on statistical
methods for efficient detection are described in [11]. To enforce 2),
the ingress edge router enforces a modified version of invariant that
accounts for preloading:

for each

∑
packet in (t-1,t]

balance(packet) · size · preload ≤ budget

This requires a classifier and per-host state at the ingress edge, and
ensures that a host does not increase its budget arbitrarily. Ingress
edge routers can drop packets once a host uses more budget than it
is assigned. Additionally, the network can enforce the preloading
behavior. A misbehaving flow may not preload and generate lots
of traffic. To enforce 3), the edge router can ensure that senders
cannot overuse the amount that it has previously committed. Later
in §6, we discuss how our inter-domain budget management can
also mitigate the problem of misbehaving users across domains.

Incremental deployment: Supporting FCP flows to traverse
a partially FCP-enabled path requires more research. Our focus

2RCP’s implementation avoids the problem by setting the maximum
rate feedback to be the link price. However, this solution is not
applicable to weighted proportional-fairness [27] because the rate
feedback (inverse of price per unit charge) can be larger than the
capacity at equilibrium.

instead is on deploying FCP locally while ensuring backwards-
compatibility; e.g., allowing legacy TCP traffic to traverse an FCP-
enabled segment. It is worthwhile to consider local deployments,
similar to those in D2TCP [47] and D3 [49], as they provide a path
towards wider adoption.

End-points only use FCP when the entire path is FCP-enabled.
When only a part of the end-to-end path is FCP enabled, end-hosts
use TCP, but the FCP routers perform FCP-style congestion control
on aggregate TCP flows within the FCP segment. When FCP routers
receive TCP traffic, they maintain a single separate queue for TCP.
The routers then map TCP traffic to a new FCP flow by attaching
an FCP header and allocating some budget. The budget amount can
be either fixed or relative to other concurrent FCP flows. The price
information is periodically sent back to the upstream FCP router.
The new FCP flow’s sending rate then determines aggregate TCP
throughput. TCP packets are dropped when the TCP queue is full,
triggering TCP’s congestion control.

Computational overhead and optimizations: To calculate the
price, routers need to keep a moving window of input budget and
update the average RTT. When packets arrive at the router, it updates
the statistics and assigns a timer for the packet so that its value can
expire when it goes out of the window. It requires roughly 20
floating point operations for each packet. We believe high-speed
implementation is possible even with software implementations on
modern hardware.3

We perform two optimizations in our implementation for greater
robustness and lower overhead: 1) We make our implementation
robust to RTT measurement errors. Equation 4 uses past price,
p(t−rtt(s)), but when price variation is large around time t−rtt(s),
small measurement error can adversely impact router’s estimate
of the actual past price. Even worse, routers may not store the
full price history. We take the minimum of p(·) and balance field
in the congestion header. This bounds the error between the paid
price of the sender and the router’s estimation, even when a router
does not fully remember its past pricing. 2) Our implementation
keeps a summary of the price history to optimize for performance.
By default, it keeps a price history up to 500 ms at every 10 usec
interval. The router updates the recent price history upon new price
generation, but at the end of a 10 usec window it computes the
average price of the window. In §5.2, we quantify the overhead
using our Click-based [29] implementation.

Parameter values: We set the average window size, d, to be
twice the average RTT. A large window makes the system react
to changes more slowly, but makes it more robust by reacting less
aggressively to transient changes. The queue parameter α is set to
2, but to prevent the remaining link capacity (denominator of Eq. 2)
from becoming negative,4 we bound its minimum value to 1/2 the
capacity. We verify the local stability of FCP using simulations in
§5.1 under this setting.

5. EVALUATION
We answer four questions in this section:

1. How does FCP perform compared to other schemes? (§5.1)
2. What is the processing overhead of FCP? (§5.2)
3. Does FCP accommodate diversity at the end-points? (§5.3)
4. Does FCP accommodate diversity in the network? (§5.4)

3As a rough estimate, Intel Core i7 series have advertised perfor-
mance of∼100 GFLOPS. At 100 Gbps, this gives a budget of∼500
FLOPS/packet.
4This can happen when the queue capacity is large compared to the
current bandwidth delay product.

Case new flows/sec FCP utilization (%) RCP utilization (%)

(a) 41.6 98.2 74.8
(b) 83.2 95.7 69.2
(c) 125 81.9 69.8

Table 1: Mixed flows: performance statistics

We use packet-level simulations using ns-2 and a Click [29]-based
implementation of FCP for our evaluation.

5.1 Performance
First, we compare the performance of FCP with other schemes

(RCP and XCP) using packet-level simulations. We then look at
unique characteristics of FCP, including its fairness, preloading
effectiveness, and stability using both simulations and our Click-
based implementation. Finally, we look at FCP’s performance under
a wide range of scenarios. The results show that FCP provides
fast convergence while providing more accurate feedback during
convergence and is as efficient as other explicit congestion control
algorithms in many cases.

5.1.1 Performance comparison
We demonstrate FCP’s efficiency under various workloads.
Long Running Flows: We first compare the convergence dy-

namics of long-running flows. We generate flows with different
round-trip propagational delays ranging from 25 ms to 625 ms.
Each flow starts one second after another traversing the same 100
Mbps bottleneck in a dumbbell topology. Each flow belongs to a
different sender, and all senders were assigned a budget of 1 $/sec.
For RCP and XCP, we used the default parameter setting. Figure 3
shows the sending rate of each flow, queue size, and utilization for
a) FCP, b) XCP, and c) RCP over time.5 FCP’s convergence is faster
than RCP’s and XCP’s. XCP flows do not converge to the fair-share
even at t=10 sec. In RCP, all flows get the same rate as soon as they
start because the router gives the same rate to all flows. However,
large fluctuation occurs during convergence because the total rate
overshoots the capacity and packets accumulate in the queue when
new flows start. Average bottleneck link utilization was 99% (FCP),
93% (XCP), and 97% (RCP).

Mixed flow sizes: We now study how FCP and RCP perform
with mix flow sizes. All flows go through a common bottleneck
of 100 Mbps. A long running flow starts at t=0.5 sec. FCP’s long-
running flow uses a unit budget. Short flows arrive as a Poisson
process, and their size is Pareto distributed with a mean size of 30
KB and shape of 1.2. We vary the fraction of bandwidth that short
flows occupy from 10% to 30%. Table 1 shows the average number
of new short flows per second and the average link utilization from
t=0.5 sec to t=30 sec for FCP and RCP. RCP’s link utilization is
much lower than that of FCP. This is because in RCP when short
flows terminate, it takes an average RTT to update the new rate and
an extra RTT for the long flow to ramp up, whereas FCP explicitly
signals the termination of flow using negative preloading. FCP’s
utilization is high, but it becomes slightly lower as the number of
short flows increase. This is because when flows terminate, even
though they preload a negative value, it takes some time for the price
to reflect due to the averaging window. In general, the utilization
has a negative correlation with the amount of input budget variance
per unit time. However, FCP handles mixed flow sizes much more
gracefully and is much more efficient than RCP.

5The sending rate is averaged over a 100 ms. For XCP (t ≥ 3), it is
averaged over 500 ms since it was more bursty.

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14

S
e
n
d

in
g

 R
a
te

 (
M

b
p

s)
FCP Flow1 (25ms)
FCP Flow2 (50ms)
FCP Flow3 (125ms)
FCP Flow4 (250ms)
FCP Flow5 (625ms)

 0
 200
 400
 600
 800

 1000

 2 4 6 8 10 12 14
 0
 20
 40
 60
 80
 100

Q
u
e
u
e
 S

iz
e
 (

K
B

)

U
ti

liz
a
ti

o
n

Time (sec)

Queue Size (KBytes)
Utilization (%)

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14

S
e
n
d

in
g

 R
a
te

 (
M

b
p

s)

XCP Flow1 (25ms)
XCP Flow2 (50ms)
XCP Flow3 (125ms)
XCP Flow4 (250ms)
XCP Flow5 (625ms)

 0
 200
 400
 600
 800

 1000

 2 4 6 8 10 12 14
 0
 20
 40
 60
 80
 100

Q
u
e
u
e
 S

iz
e
 (

K
B

)

U
ti

liz
a
ti

o
n

Time (sec)

Queue Size
Utilization

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14

S
e
n
d

in
g

 R
a
te

 (
M

b
p

s)

RCP Flow1 (25ms)
RCP Flow2 (50ms)
RCP Flow3 (125ms)
RCP Flow4 (250ms)
RCP Flow5 (625ms)

 0
 200
 400
 600
 800

 1000

 2 4 6 8 10 12 14
 0
 20
 40
 60
 80
 100

Q
u
e
u
e
 S

iz
e
 (

K
B

)

U
ti

liz
a
ti

o
n

Time (sec)

Queue Size (KB)
Utilization (%)

Figure 3: Convergence dynamics of a) FCP, b) XCP, and c) RCP: FCP achieves fast convergence and accurate rate control. When
new flows arrive, XCP’s convergence is slow, and RCP’s rate overshoot is significant.

Fan-out=50

…

HostA HostB

100Mbps
 0

 25

 50

 75

 100

 0 2 4 6 8 10 12

R
a
te

 (
M

b
p

s)

Host A (budget=1)
Host B (budget=1)

 0
 10
 20
 30
 40
 50

 0 2 4 6 8 10 12

N
u
m

b
e
r

o
f

Fl
o
w

s

Time (sec)

Number of A's Flows
Number of B's Flows

Figure 4: Fair-share is determined by sender’s budget, not the
number of flows.

 20
 40
 60
 80

 100
 120
 140
 160

 1 2 3 4 5 6 7 8 9 10S
e
n
d

in
g

 R
a
te

 (
M

b
p

s)

time (sec)

Instanteneous Rate (Sim.)
Instanteneous Rate (Click impl.)

Figure 5: FCP is stable under random perturbation.

5.1.2 Fairness, stability, and preloading
To better understand FCP, we look at the behaviors specific to

FCP. In particular, we look at the fairness, stability, and the preload-
ing behavior. We show that 1) the fair-share is determined by the
budget, 2) FCP is locally stable under random perturbations, and 3)
preloading allows fast convergence and accurate feedback.

FCP’s fairness is very different from traditional flow rate fairness.
Two hosts with equal budget achieve the same throughput when the
path price is the same regardless of the number of flows. To show
this, we create two hosts A and B of equal budget, whose flows
traverse the common bottleneck link (see Figure 4 left). Host A’s
flows of size 1 MB arrive randomly between t=[1,3], and Host B
sends a long-running flow starting at t=1. Figure 4 (right) shows the
total sending rate and the number of active flows. Host A’s traffic,
when present, gets 50% share regardless of the number of flows.

Local stability: A common method to prove the local stability
is to show the stability of a linearized equation of the congestion
controller near its equilibrium point [25]. However, the feedback
equation at the equilibrium point of explicit congestion control algo-
rithms is not continuous and the above method produces incorrect
results [4].

Therefore, we demonstrate the stability by introducing random
perturbations in our packet-level simulations and click-based imple-

mentation. We intentionally introduce errors in the price calculation
and observe whether the system is able to return to correct and stable
operation. We use a single link with a round trip delay of 100 ms
with 100 Mbps of capacity. A long running flow starts at t=1.1 sec
with a unit budget. At every second from t=2, we introduce random
perturbation of [-30%, 30%] in the router’s price calculation for 100
ms. For example, during the interval, t=[2,2.1] sec, the feedback
price is consistently off from the correct price by a fixed fractional
amount drawn randomly. Figure 5 shows the instantaneous sending
rate of the flow in our simulation and click-based implementation. In
both cases, FCP returns to equilibrium shortly after the perturbation.

How effective is preloading? So far, we have seen the perfor-
mance of FCP with preloading. We now look at the benefit of
preloading in isolation by comparing FCP with RCP that does not
have preloading. We compare a FCP flow that continuously doubles
its budget every 100 ms (one RTT) with RCP flows that double in
flow count for a duration of 1 second. In both cases, the load (FCP’s
input budget and RCP’s flow count) doubles every RTT.

Figure 6 shows the normalized incoming traffic at the bottleneck
link while the load is ramping up from 1 to 1000 during the first
second. We see that preloading allows fast convergence and accurate
rate control; FCP’s normalized rate is close to 1 at all times. With
preloading end-hosts can rapidly increase or decrease a flow’s budget
without causing undesirable behaviors. On the other hand, RCP
significantly overestimates the sending rate because RCP allocates
bandwidth in very aggressively to mimic processor sharing.

Preloading with short flows: Preloading is also different from the
step-change algorithm [27] for RCP. FCP’s preloading allows end-
points to explicitly account for short flows by requesting only the
amount of resources it is going to consume on a packet-by-packet
basis, which handles application’s bursty traffic of known size (e.g,
HTTP response in a web server) much more effectively. To highlight
this, we generate two flows, a long flow and a short flow (25 KB),
with a unit budget sharing a bottleneck with round-trip delay of 40
ms. Figure 7 (a) shows the sending rate for both flows at every 10
ms period when the short flow uses its entire budget, which mimics
the behavior of the step-change algorithm. It preloads its entire
budget, but does not send much traffic after the preload. As a result,
the path price goes up and Flow 0 nearly halves its sending rate.
This period of underutilization only ends after the duration of the
averaging window (an average RTT in RCP) when the router adjusts
the price to achieve full utilization. Figure 7 (b) shows the correct
FCP behavior, which preloads the exact amount of budget it is going
to use (compared to current budget consumption) and performs
negative preloading at the end of the flow. In summary, FCP’s
preloading makes an end-point a much more active component in
congestion control, ensuring high utilization and fast convergence.

 0
 1
 2
 3
 4
 5
 6

 0 0.5 1 1.5 2 2.5

In
co

m
in

g
 T

ra
ffi

c
/C

a
p
a
ci

ty

Time (sec)

RCP
FCP

Figure 6: Preloading allows fast, grace-
ful convergence.

 20
 40
 60
 80

 100
 120
 140

 1.6 1.8 2 2.2 2.4S
e
n
d

in
g

 R
a
te

 (
M

b
p

s)

Time (sec)

Flow 0
Flow 1 20

 40

 60

 80

 100

 1.6 1.8 2 2.2 2.4S
e
n
d

in
g
 R

a
te

 (
M

b
p

s)

Time (sec)

Flow 0
Flow 1

Total

(a) A misbehaving short flow (b) Correct preloading

Figure 7: Preloading achieves high link utilization.

 0

 1

 2

 3

 4

 5

 6

 0 300 600 900 1200 1500
 0

 10

 20

 30

 40

 50

 60

 70

T
h
ro

u
g

h
p

u
t

(M
p

p
s)

T
h
ro

u
g
h
p
u
t

(G
b
p

s)

Packet size

FCP (Mpps)
FCP (Gbps)

Baseline (Mpps)
Baseline (Gbps)

Figure 8: Forwarding throughput

 0
 20
 40
 60
 80

 100
 120
 140
 160

M
ic

ro
b
e
n
ch

m
a
rk

 (
n
a
n
o
se

co
n
d
s)

clock gettime
Update Price

Misc Overhead
Pkt Gen

Lookup Price
Store Price

Figure 9: Microbenchmark

Sender0(S0)
Budget1

Sender1(S1)
Budget2

Sender2(S2)
Budget1

Receiver0

Receiver1

Round-triplatency:12ms

250Mbpslink

50Mbpslink200Mbpslinks

Topflow

Btmflow

Figure 10: Topology

5.2 Overhead
Using our Click implementation, we measure the packet forward-

ing throughput and perform micro-benchmarking with a single-
thread Click running on an Intel Xeon L5640 2.26 GHz core. Our
implementation holds past price history up to 500 ms and updates
the history every 10 usec, as described in §4. The total memory
use was about 72MB with the heap size being 54MB. To measure
the computational overhead of FCP’s algorithm, we intentionally
eliminated the I/O. Thus, our experiment only generates packets
inside Click, runs through the algorithm, and discards the packets.

Figure 8 shows the throughput (in Mpackets per second and in
Gbits per second) of our implementation and of baseline Click
without FCP by varying packet size (from 64 bytes to 1500 bytes).
The baseline Click gives a throughput of 6.1 Mpps (3.1 Gbps @ 64
bytes), and our FCP implementation performs at 2.6 Mpps (1.25
Gbps @ 64 bytes) using a single core. Upon inspection of the micro-
benchmark (Figure 9), we observe that only a fraction of cycles
(33%) are spent performing the FCP-related computation. The rest
of the cycles are spent reading the system time when the packet was
received (33%), generating the packets (18.5%), and other Click
overhead (14.8%), such as recycling the internal packet pool and
driving the packet through the list of Click elements. Such overhead
can be easily removed in hardware implementations. For example,
packet reception timestamp can be obtained via the NIC. Ignoring
such overhead, FCP’s forwarding throughput can scale to 7.8 Mpps
(3.78 Gbps @ 64 bytes).

Although the overhead is not prohibitive, one might imagine this
would hinder FCP’s deployment on high-speed links. We believe
that it is possible to use virtual links/queues and receiver-side-scaling
(RSS) to scale the performance significantly. However, we leave
this as future work, focusing on the core algorithm in this paper.

5.3 End-point Flexibility
We now demonstrate the flexibility of FCP’s end-point outlined

in §3.2 using packet-level simulations. For comparison, we use the
common topology of Figure 10 unless otherwise noted. Sender 0
(S0) transmits a flow to receiver 0. Both S1 and S2 have a flow to
receiver 0 and receiver 1. S0 and S2 have a budget of 1 $/sec, and
S1 has twice as much.

Equal-budget (baseline) splits the budget equally among flows
within a host. For example, S1 splits its budget in half; the top flow
(to receiver 0) and the bottom flow (to receiver 1) get 1 $/sec each.
Figure 11 shows the instantaneous sending rate of each sender with
S1’s rate broken down. It shows FCP achieves weighted bandwidth
allocation. The top 250 Mbps bottleneck link’s total input budget
is 2.5 $/sec. Because S0 and S1’s top flow use 1 $/sec, their
throughput is 100 Mbps.
Equal throughput: Now, S1 changes its budget assignment to
equal-throughput where it tries to achieve equal throughput on its
flows, while others still use equal-budget assignment. S1 starts
with the equal-budget assignment, and reassigns budget every two
average RTTs, increasing the budget of a flow whose rate is less than
the average rate. Figure 12 shows the result. At steady state, S1’s
two flows achieve the same throughput of 38.7 Mbps. A budget of
0.27 $/sec is assigned to the top flow, and 1.73 $/sec to the bottom.
Max-throughput: S1 now tries to maximize its total throughput,
while others still use the equal-budget assignment. We implement
this using gradient ascent. S1’s flows start with equal budget, but
at every two average RTT, it performs an experiment to change the
budget assignment. It chooses a flow in round robin fashion and
increases its budget by 10% while decreasing others uniformly to
preserve the total budget allocation. After two average RTTs, it
compares the current throughput averaged over an RTT with the
previous result, and moves towards the gradient direction. The
algorithm stops when the throughput difference is less than 0.5%,
but restarts when it observes a change in the path price.

Figure 13 shows the result. S1’s total throughput converges at
150.6 Mbps, and the assigned budget for the top flow (X) converges
at 1.56 $/sec. Figure 14 a) shows the theoretical throughput versus
the budget assignment, X . The theoretical maximum throughput
is 151.6 Mbps at X = 1.68 When more (less) budget is spent on X
than this, the top (bottom) bottleneck link’s price goes up (down),
and the marginal utility becomes negative. Figure 14 b) shows such
non-linear utility (rate per unit budget) curve for the two flows.

Background flows: FCP also supports background flows, which
by definition is a flow that only occupies bandwidth if there’s no
other flow competing for bandwidth. This can be achieved with a
flow having a very small assigned budget compared to other flows.
For this, each host uses 1/10000 of the normal flow’s budget towards

 0

 50

 100

 150

 1 1.2 1.4 1.6 1.8 2

S
e
n
d

in
g

 R
a
te

 (
M

b
p

s)

 0

 50

 100

 150

 1 1.2 1.4 1.6 1.8 2

S
e
n
d

in
g

 R
a
te

 (
M

b
p

s) S0
S1:Top
S1:Btm
S2

 0
 100
 200
 300

 1 1.2 1.4 1.6 1.8 2Q
u
e
u
e
 (

K
B

y
te

s)

Time (sec)

Top link (250 Mbps)
Bottom link (50 Mbps)

Figure 11: Equal-budget flows

 0

 50

 100

 150

 1 1.2 1.4 1.6 1.8 2

S
e
n
d
in

g
 R

a
te

 (
M

b
p
s)

 0

 50

 100

 150

 1 1.2 1.4 1.6 1.8 2

S
e
n
d
in

g
 R

a
te

 (
M

b
p
s) S0

S1:Top
S1:Btm
S2

 0
 100
 200
 300

 1 1.2 1.4 1.6 1.8 2Q
u
e
u
e
 (

K
B

y
te

s)

Time (sec)

Top link (250 Mbps)
Bottom link (50 Mbps)

Figure 12: Equal-throughput flows

 0

 50

 100

 150

 1 1.2 1.4 1.6 1.8 2

S
e
n
d

in
g

 R
a
te

 (
M

b
p

s)

 0

 50

 100

 150

 1 1.2 1.4 1.6 1.8 2

S
e
n
d

in
g

 R
a
te

 (
M

b
p

s) S0
S1:Top
S1:Btm
S2

 0
 100
 200
 300

 1 1.2 1.4 1.6 1.8 2Q
u
e
u
e
 (

K
B

y
te

s)

Time (sec)

Top link (250 Mbps)
Bottom link (50 Mbps)

Figure 13: Max-throughput flows

 0

 50

 100

 150

 200

 0 0.5 1 1.5 2S
1

's
 T

h
ro

u
g
h
p
u
t

(M
b
p
s)

Budget assignment for X

Max-throughputTotal
S1: Top

S1: Btm

Equal-throughput

 0

 50

 100

 150

 200

 0 0.5 1 1.5 2

U
ti

lit
y
 (

M
b

p
s/

$
)

Budget assignment for X

S1: Top
S1: Btm

Figure 14: Theoretical (a) throughput and utility (b) versus
budget assignment X for flow S1’s top flow.

200Mbps

100Mbps

50Mbps Flow1

Flow2(Background)
Flow3

Flow0 Linklatency:3ms

 0

 25

 50

 75

 100

 0 2 4 6 8 10 12 14

R
a
te

 (
M

b
p
s)

Time (sec)

Flow0
Flow1

Bgr
Flow3

Figure 15: Background flows only take up the spare capacity.
The sending rate is averaged over 40 ms.

background flows. Using the topology in Figure 15, we run a
background flow (Flow 2) with three normal flows (Flow 0, 1, and
3) with a unit budget. Flow 0 starts at t=1 and immediately occupies
the 50 Mbps bottleneck link (Figure 15). Flow 1 arrives at t=2 and
shares the bottleneck with Flow 0. At t=5, the background flow
(Flow 2) starts and immediately occupies the remaining 75 Mbps of
the 100 Mbps link. Note this did not affect Flow 0’s rate. Flow 3
arrives at t=10 with unit budget and drives out the background flow.
Note that now the 100 Mbps link also became a bottleneck, and
Flow 0 is getting a smaller throughput than Flow 1. This is because
Flow 0 now pays the price of the two bottleneck links combined.

5.4 Network Flexibility
FCP’s local control and aggregation combined with preloading

allow FCP to implement a variety of QoS schemes and support a
different network service model by modifying the router’s behavior,
while being compatible with the original FCP. To highlight this, we
demonstrate the features described in §3.2.

Bandwidth stability: We first demonstrate the bandwidth sta-
bility feature. Figure 16 shows the sending rate of a stability flow
(Flow 2) compared to a normal flow (Flow 1) under changing
network conditions. Flow 2 starts at t=2 and slowly ramps up dou-
bling its assigned budget at every RTT (100 ms). Cross traffic (Flow
3, dashed line) that has 50 times the budget of Flow 1 repeats a
periodic on/off pattern starting from t=3. Flow 1’s sending rate
(solid black line) changes abruptly when the cross traffic joins and

 0

 25

 50

 75

 100

 1 2 3 4 5 6 7 8 9 10

R
a
te

 (
M

b
p
s) Flow1 (Normal)

Flow2 (Stability)
Flow3 (Normal)

 0
 400
 800

 1200

 1 2 3 4 5 6 7 8 9 10
Q

u
e
u
e

Time (sec)

Queue Size (KBytes)

Figure 16: Support for bandwidth stability

Linkcapacity:100Mbps

MulticastSender

MulticastReceivers

20Mbps10Mbps

10Mbps 20Mbps 30Mbps 40Mbps

Unicast1
Unicast2
Unicast3

(a)
ToRSwitch

20Servers/Rack

VM1 VM2

VM3 VM4

VM39 VM40

…

 (b)

g
ro

u
p

1

g
ro

u
p

0

Figure 17: Topologies and flow patterns of experiments

leaves, but the stability flow reacts slowly because its price does not
change by more than twice in any direction during the averaging
window.

Multicast congestion control: FCP’s flexibility even enables
the network to support congestion control with a different service
model, such as multicast (§3.2). We use the topology of Figure 17
(a) and generate a multicast flow from the top node to the bottom
four receivers. The link capacity varies by link from 10 to 100
Mbps. We also introduce three competing unicast flows (Unicast
1, 2, and 3) to vary the load over time, and show that the multicast
flow dynamically adapts its rate.

Figure 18 shows the result. A multicast flow starts at t=1 and
saturates the bottleneck link capacity of 10 Mbps. Three unicast
flows then start sequentially at t=2, 2.5, 3. When Unicast 1
arrives, it equally shares the bottleneck bandwidth. As other unicast
flows arrive, other links also become a bottleneck and their price
goes up. As a result, the multicast flow’s price (the sum of all link
prices) goes up and its sending rate goes down. At steady state, the
multicast flow’s throughput is around 4 Mbps. The unicast flows
take up the remaining capacity (e.g., unicast 3’s rate is 36 Mbps).

Deadline support: FCP can offer D3-style [49] deadline support
using differential pricing. Deadline flows are guaranteed a fixed
price when admitted. We use the minimum price (described in §4)

 0

 10

 20

 30

 1 2 3 4S
e
n
d
in

g
 R

a
te

 (
M

b
p
s)

Time (sec)

Multicast
Unicast 1
Unicast 2
Unicast 3

Figure 18: Multicast flow adapts to congestion.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

S
e
n
d

in
g

 R
a
te

 (
M

b
p

s) BE
D1
D2
D3
D4

D5 (BE)
D6 (BE)

Figure 19: Deadline flows

as the fixed price. At the beginning, a deadline flow preloads the
amount required to meet the desired rate at once. If the routers on
the path can accommodate the new deadline flow, they return this
minimum price as feedback. The deadline flow is then able to send
at the desired rate to meet the deadline. Otherwise, routers give the
normal pricing and treat the flow as a best effort flow. Our results in
Figure 19 show both cases.

Figure 19 shows the instantaneous rates of deadline and best effort
flows going through a 100 Mbps bottleneck link with a round-trip
delay of 2 ms. The queue is set to admit up to 80 Mbps of deadline
flows and assigns at least 20 Mbps to best effort flows in a work
conserving manner. A best effort (BE) flow starts at the beginning
and saturates the link. At t=0.1 sec, two deadline flows (D1 and D2)
requiring 30 Mbps of throughput arrive to meet a flow completion
time of ∼200 ms. Because the link can accommodate the deadline
flows, they both get admitted and complete within the deadline.
At t=0.6 sec, four deadline flows (D3 to D6) arrive with the same
requirement. However, the network can only accommodate two
deadline flows (D4 and D5). The other two (D5 and D6) receive the
best effort pricing and additionally preload to achieve their fair-share
in the best effort queue.

6. BUDGET MANAGEMENT
So far, we assumed the budget is allocated in a centralized manner.

However, FCP also allows decentralized budget management. In
particular, FCP allows networks to dynamically translate the value of
a budget belonging to different flow groups or assigned by different
domains. The former allows aggregate congestion control between
groups of flows, and the latter enables distributed budget assignment
between mutually untrusted domains.

Aggregate control: FCP allows the network to perform aggre-
gate congestion control over an arbitrary set of flows so that each
group in aggregate attains bandwidth proportional to its weight.
This, for example, can be used to dynamically allocate bandwidth
between multiple tenants in a data-center [44].

To achieve this, we view each group as having its own currency
unit whose value is proportional to the weight of the group and is
inversely proportional to the aggregate input budget of the group.
When giving feedback, a router translates its price into the group’s
current currency value (Figure 21). For example, if flow group A has
a weight of 2 and B has a weight of 1, and their current input budgets

 0

 250

 500

 750

 1000

 1 1.5 2 2.5 3 3.5

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Time (sec)

VM Group 0
VM Group 1

Figure 20: Aggregate control

10$/sec

100¥/sec
Linkprice:1€/bit

Weight2

Weight1

Price feedback(¥):1€/bit x exchange ¥/€

Price feedback($):1€/bit x exchange $/€

Figure 21: Dynamic value translation.

are, respectively, 10 $/sec and 100 U/sec, A’s currency has more
value. To estimate the input budget for each group of flows, we use
the balance field. Each router keeps a separate input budget for
each group. It also keeps the aggregate input budget using its own
link’s price history and updates the price as in the original scheme
using Equation 2. Thus, we calculate the normalized exchange rate
EG for flow group G as:

EG(t) =
wG

∑H∈Group wH
/

IG(t)
∑H∈Group IH(t)

And adjust the price feedback for packet s as:
price(s) = price(s)+ p(t) ·EG(t)

where p(·) is defined in Equation 2.
We apply this to allocate resources between tenants in a data-

center. We perform a packet-level simulation, using the flow pattern
of Figure 17 (b), similar to the example in [44]. Two tenants share
20 servers in a rack, each having two virtual machines (VMs). VM
group 0 belongs to tenant 0 and group 1 to tenant 1. All links run
the algorithm above, and the cloud provider assigns a weight of two
to tenant 1 and a unit weight to tenant 0. Each tenant can allocate
a budget to each of its own VMs independently. Here, we assume
they assign a unit budget to all VMs. Figure 20 shows the result
with the aggregate throughput of each group and individual flows.
From t=1.5 sec, VM group 1’s 20 flows start in sequence. The result
highlights two main benefits: 1) Regardless of the number of flows
in the group, the aggregate flows get bandwidth proportional to their
weights; group 1 gets twice as much as group 0. 2) The weight of
flows within each group is preserved; group 1’s individual flows
(dotted lines), which have equal budget, achieve equal throughput.

Inter-domain budget management: In an Internet scale deploy-
ment, budget assignment must be made in a distributed fashion. One
solution is to let each ISP or domain assign budget to its customers
without any coordination, and rely on dynamic translation of the
value. Here, we outline the approach.

When a packet enters another domain, the value the packet is
holding (balance field in the header) can be translated to the ingress
network’s price unit. One can use a relatively fixed exchange rate
that changes slowly or a dynamic exchange rate similar to the aggre-
gate congestion control above. This allows the provider (peering)
network to assign bandwidth to its customers (peers) proportional
to their weight. For the price feedback to be represented in the unit
of the sender’s price, the data packet must carry an additional field

for the exchange rate. The scheme protects the provider’s network
from malicious customer networks that intentionally assign large
amount of budget in an attempt to obtain more resources, because
their budget’s actual value will be discounted.

7. CONCLUSION
This paper explores an important open problem of accommodat-

ing diverse application requirements in congestion control. While
there have been a number of studies to accommodate diverse styles
of communication in Internet architectures [20, 24], little research
shows how to accommodate diverse behaviors in congestion con-
trol. This problem is further exacerbated by recent advances in
router-assisted congestion control, which makes congestion control
inherently much less flexible. In this paper, we address this chal-
lenge by introducing a flexible framework for congestion control,
called FCP, that allows various strategies and algorithms to coexist
within the same network. FCP gives more control at the end-point
and allows the network to perform resource allocation with the end-
point’s input. We demonstrate that this not only enables end-points
to optimize their own objective, but also allows various quality-of-
service features and resource management policies to be introduced
in the network.

Acknowledgments
We thank Aaron Gember, Saul St. John, Hyeontaek Lim, David
Naylor, Jeff Pang, and Vyas Sekar for their valuable comments
and suggestions on earlier versions of this paper. We also thank
our shepherd Arvind Krishnamurthy and anonymous reviewers for
their feedback. This research was supported in part by the National
Science Foundation under awards CNS-1040801, CNS-1040757,
CNS-0905134, and CNS-0746531.

References
[1] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet

impasse through virtualization. IEEE Computer, 38, Apr. 2005.
[2] S. Athuraliya, S. Low, V. Li, and Q. Yin. Rem: active queue management. IEEE

Netw., 15(3):48 –53, May 2001.
[3] A. Balachandran et al. A quest for an internet video quality-of-experience metric.

In Proc. ACM HotNets, 2012.
[4] H. Balakrishnan, N. Dukkipati, N. McKeown, and C. Tomlin. Stability analysis

of explicit congestion control protocols. IEEE Commun. Lett., 11(10), 2007.
[5] H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integrated Congestion Manage-

ment Architecture for Internet Hosts. In Proc. ACM SIGCOMM, Sept. 1999.
[6] D. Bansal and H. Balakrishnan. Binomial Congestion Control Algorithms. In

IEEE Infocom, Anchorage, AK, Apr. 2001.
[7] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Archi-

tecture for Differentiated Service. RFC 2475 (Informational), Dec. 1998.
[8] C. Borchert, D. Lohmann, and O. Spinczyk. CiAO/IP: a highly configurable

aspect-oriented IP stack. In Proc. ACM MobiSys, June 2012.
[9] P. G. Bridges, G. T. Wong, M. Hiltunen, R. D. Schlichting, and M. J. Barrick. A

configurable and extensible transport protocol. IEEE ToN, 15(6), Dec. 2007.
[10] B. Briscoe. Flow rate fairness: dismantling a religion. ACM SIGCOMM CCR,

37(2), Mar. 2007.
[11] B. Briscoe, A. Jacquet, C. Di Cairano-Gilfedder, A. Salvatori, A. Soppera, and

M. Koyabe. Policing congestion response in an internetwork using re-feedback.
In Proc. ACM SIGCOMM, 2005.

[12] C. Courcoubetis, V. A. Siris, and G. D. Stamoulis. Integration of pricing and
flow control for available bit rate services in ATM networks. In Proc. IEEE
GLOBECOM, 1996.

[13] J. Crowcroft and P. Oechslin. Differentiated end-to-end internet services using a
weighted proportional fair sharing TCP. ACM SIGCOMM CCR, 28, 1998.

[14] D. Damjanovic and M. Welzl. MulTFRC: providing weighted fairness for multi-
media applications (and others too!). ACM SIGCOMM CCR, 39, June 2009.

[15] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and
H. Zhang. Understanding the impact of video quality on user engagement. In
Proc. ACM SIGCOMM, 2011.

[16] N. Dukkipati, M. Kobayashi, R. Zhang-shen, and N. Mckeown. Processor shar-
ing flows in the Internet. In Proc. IWQoS, 2005.

[17] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based congestion
control for unicast applications. In Proc. ACM SIGCOMM, 2000.

[18] S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking, 1, Aug. 1993.

[19] B. Ford. Structured streams: a new transport abstraction. In Proc. ACM SIG-
COMM, 2007.

[20] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox.
Intelligent design enables architectural evolution. In Proc. ACM HotNets, 2011.

[21] R. J. Gibbens and F. P. Kelly. Resource pricing and the evolution of congestion
control. Automatica, pages 1969–1985, 1999.

[22] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly high-speed TCP variant.
SIGOPS Oper. Syst. Rev., 42, July 2008.

[23] D. Han, A. Anand, A. Akella, and S. Seshan. RPT: Re-architecting loss protec-
tion for content-aware networks. In Proc. 9th USENIX NSDI, Apr. 2012.

[24] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan, W. Wu,
A. Akella, D. G. Andersen, J. W. Byers, S. Seshan, and P. Steenkiste. XIA:
Efficient support for evolvable internetworking. In Proc. USENIX NSDI, 2012.

[25] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High Bandwidth-
Delay Product Networks. In Proc. ACM SIGCOMM, Pittsburgh, PA, Aug. 2002.

[26] F. Kelly. Charging and rate control for elastic traffic. Eur. Trans. Telecommun.,
1997.

[27] F. Kelly, G. Raina, and T. Voice. Stability and fairness of explicit congestion
control with small buffers. ACM SIGCOMM CCR, 2008.

[28] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for communication
networks: shadow prices, proportional fairness and stability. Journal of the Op-
erational Research Society, 49(3), 1998.

[29] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
modular router. ACM Trans. Comput. Syst., 18(3):263–297, Aug. 2000.

[30] S. Kunniyur and R. Srikant. End-to-end congestion control schemes: utility
functions, random losses and ecn marks. IEEE/ACM ToN, 11(5), 2003.

[31] A. Lakshmikantha, R. Srikant, N. Dukkipati, N. McKeown, and C. Beck. Buffer
sizing results for rcp congestion control under connection arrivals and departures.
SIGCOMM Comput. Commun. Rev., 39(1), Dec. 2009.

[32] A. Li. RTP Payload Format for Generic Forward Error Correction. RFC 5109
(Proposed Standard), Dec. 2007.

[33] S. H. Low and D. E. Lapsley. Optimization flow control. i. basic algorithm and
convergence. IEEE/ACM Trans. Netw., 7(6):861–874, Dec. 1999.

[34] R. T. Ma, D. M. Chiu, J. C. Lui, V. Misra, and D. Rubenstein. Price differentia-
tion in the kelly mechanism. SIGMETRICS PER, 40(2), Oct. 2012.

[35] J. K. MacKie-Mason and H. R. Varian. Pricing the internet. Computational
Economics 9401002, EconWPA, Jan. 1994.

[36] L. Massoulié and J. Roberts. Bandwidth sharing: objectives and algorithms.
IEEE/ACM Trans. Netw., 10(3):320–328, June 2002.

[37] P. Natarajan, J. R. Iyengar, P. D. Amer, and R. Stewart. SCTP: an innovative
transport layer protocol for the web. In Proc. World Wide Web, 2006.

[38] A. Odlyzko. Paris metro pricing: The minimalist differentiated services solution.
In Proc. IWQoS, 1999.

[39] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and T. Stack. Upgrading transport
protocols using untrusted mobile code. In Proc. ACM SOSP, 2003.

[40] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy, and I. Sto-
ica. Faircloud: sharing the network in cloud computing. In Proc. ACM SIG-
COMM, 2012.

[41] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C. Snoeren.
Cloud control with distributed rate limiting. In Proc. ACM SIGCOMM, 2007.

[42] S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pricing in computer networks:
reshaping the research agenda. ACM SIGCOMM CCR, 26(2), Apr. 1996.

[43] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown,
and G. Parulkar. Can the production network be the testbed? In Proc. 9th
USENIX OSDI, Vancouver, Canada, Oct. 2010.

[44] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Sharing the data
center network. In Proc. 8th USENIX NSDI, 2011.

[45] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: achieving
approximately fair bandwidth allocations in high speed networks. In Proc. ACM
SIGCOMM, 1998.

[46] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz. OverQoS: An overlay
based architecture for enhancing Internet QoS. In Proc. 1st USENIX NSDI, San
Francisco, CA, Mar. 2004.

[47] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware datacenter TCP
(D2TCP). In Proc. ACM SIGCOMM, 2012.

[48] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: a mechanism for back-
ground transfers. SIGOPS Oper. Syst. Rev., 36, Dec. 2002.

[49] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never than late:
meeting deadlines in datacenter networks. In Proc. ACM SIGCOMM, 2011.

[50] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design, implementation
and evaluation of congestion control for multipath TCP. In Proc. 8th USENIX
NSDI, Boston, MA, Apr. 2011.

[51] Y. Yang and S. Lam. General aimd congestion control. In Proc. ICNP, 2000.
[52] Y. Yi and M. Chiang. Stochastic network utility maximisation - a tribute to

kelly’s paper published in this journal a decade ago. European Transactions on
Telecommunications, 19(4):421–442, 2008.

